Database GRAPH THEORY Walks, paths and cycles Closed walks clwlks  
				
		 
		
			
		 
		Description:   The set of closed walks (in an undirected graph).  (Contributed by Alexander van der Vekens , 15-Mar-2018)   (Revised by AV , 16-Feb-2021) 
       (Revised by AV , 29-Oct-2021) 
		
			
				
					Ref 
					Expression 
				 
				
					Assertion 
					clwlks ⊢   ( ClWalks ‘ 𝐺  )  =  { 〈 𝑓  ,  𝑝  〉  ∣  ( 𝑓  ( Walks ‘ 𝐺  ) 𝑝   ∧  ( 𝑝  ‘ 0 )  =  ( 𝑝  ‘ ( ♯ ‘ 𝑓  ) ) ) }  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							biidd ⊢  ( 𝑔   =  𝐺   →  ( ( 𝑝  ‘ 0 )  =  ( 𝑝  ‘ ( ♯ ‘ 𝑓  ) )  ↔  ( 𝑝  ‘ 0 )  =  ( 𝑝  ‘ ( ♯ ‘ 𝑓  ) ) ) )  
						
							2 
								
							 
							df-clwlks ⊢  ClWalks  =  ( 𝑔   ∈  V  ↦  { 〈 𝑓  ,  𝑝  〉  ∣  ( 𝑓  ( Walks ‘ 𝑔  ) 𝑝   ∧  ( 𝑝  ‘ 0 )  =  ( 𝑝  ‘ ( ♯ ‘ 𝑓  ) ) ) } )  
						
							3 
								1  2 
							 
							fvmptopab ⊢  ( ClWalks ‘ 𝐺  )  =  { 〈 𝑓  ,  𝑝  〉  ∣  ( 𝑓  ( Walks ‘ 𝐺  ) 𝑝   ∧  ( 𝑝  ‘ 0 )  =  ( 𝑝  ‘ ( ♯ ‘ 𝑓  ) ) ) }