Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑊 ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) ) |
2 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
3 |
2
|
clwwlkbp |
⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑊 ≠ ∅ ) ) |
4 |
3
|
simp2d |
⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
5 |
|
cshwn |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
6 |
4 5
|
syl |
⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
7 |
6
|
adantr |
⊢ ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
8 |
1 7
|
sylan9eq |
⊢ ( ( 𝑁 = ( ♯ ‘ 𝑊 ) ∧ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 cyclShift 𝑁 ) = 𝑊 ) |
9 |
|
simprl |
⊢ ( ( 𝑁 = ( ♯ ‘ 𝑊 ) ∧ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ) |
10 |
8 9
|
eqeltrd |
⊢ ( ( 𝑁 = ( ♯ ‘ 𝑊 ) ∧ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 cyclShift 𝑁 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |
11 |
|
simprl |
⊢ ( ( ¬ 𝑁 = ( ♯ ‘ 𝑊 ) ∧ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ) |
12 |
|
df-ne |
⊢ ( 𝑁 ≠ ( ♯ ‘ 𝑊 ) ↔ ¬ 𝑁 = ( ♯ ‘ 𝑊 ) ) |
13 |
|
fzofzim |
⊢ ( ( 𝑁 ≠ ( ♯ ‘ 𝑊 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
14 |
13
|
expcom |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝑁 ≠ ( ♯ ‘ 𝑊 ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
15 |
12 14
|
syl5bir |
⊢ ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( ¬ 𝑁 = ( ♯ ‘ 𝑊 ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
16 |
15
|
adantl |
⊢ ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ¬ 𝑁 = ( ♯ ‘ 𝑊 ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
17 |
16
|
impcom |
⊢ ( ( ¬ 𝑁 = ( ♯ ‘ 𝑊 ) ∧ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
18 |
|
clwwisshclwws |
⊢ ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝑁 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |
19 |
11 17 18
|
syl2anc |
⊢ ( ( ¬ 𝑁 = ( ♯ ‘ 𝑊 ) ∧ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 cyclShift 𝑁 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |
20 |
10 19
|
pm2.61ian |
⊢ ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝑁 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |