Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlk.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
clwwlk.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
|
df-clwwlk |
⊢ ClWWalks = ( 𝑔 ∈ V ↦ { 𝑤 ∈ Word ( Vtx ‘ 𝑔 ) ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝑔 ) ) } ) |
4 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
5 |
4 1
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = 𝑉 ) |
6 |
|
wrdeq |
⊢ ( ( Vtx ‘ 𝑔 ) = 𝑉 → Word ( Vtx ‘ 𝑔 ) = Word 𝑉 ) |
7 |
5 6
|
syl |
⊢ ( 𝑔 = 𝐺 → Word ( Vtx ‘ 𝑔 ) = Word 𝑉 ) |
8 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Edg ‘ 𝑔 ) = ( Edg ‘ 𝐺 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( 𝑔 = 𝐺 → ( Edg ‘ 𝑔 ) = 𝐸 ) |
10 |
9
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ↔ { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
11 |
10
|
ralbidv |
⊢ ( 𝑔 = 𝐺 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
12 |
9
|
eleq2d |
⊢ ( 𝑔 = 𝐺 → ( { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝑔 ) ↔ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) ) |
13 |
11 12
|
3anbi23d |
⊢ ( 𝑔 = 𝐺 → ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝑔 ) ) ↔ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) ) ) |
14 |
7 13
|
rabeqbidv |
⊢ ( 𝑔 = 𝐺 → { 𝑤 ∈ Word ( Vtx ‘ 𝑔 ) ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝑔 ) ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝑔 ) ) } = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) } ) |
15 |
|
id |
⊢ ( 𝐺 ∈ V → 𝐺 ∈ V ) |
16 |
1
|
fvexi |
⊢ 𝑉 ∈ V |
17 |
16
|
a1i |
⊢ ( 𝐺 ∈ V → 𝑉 ∈ V ) |
18 |
|
wrdexg |
⊢ ( 𝑉 ∈ V → Word 𝑉 ∈ V ) |
19 |
|
rabexg |
⊢ ( Word 𝑉 ∈ V → { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) } ∈ V ) |
20 |
17 18 19
|
3syl |
⊢ ( 𝐺 ∈ V → { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) } ∈ V ) |
21 |
3 14 15 20
|
fvmptd3 |
⊢ ( 𝐺 ∈ V → ( ClWWalks ‘ 𝐺 ) = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) } ) |
22 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( ClWWalks ‘ 𝐺 ) = ∅ ) |
23 |
|
noel |
⊢ ¬ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ ∅ |
24 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( Edg ‘ 𝐺 ) = ∅ ) |
25 |
2 24
|
syl5eq |
⊢ ( ¬ 𝐺 ∈ V → 𝐸 = ∅ ) |
26 |
25
|
eleq2d |
⊢ ( ¬ 𝐺 ∈ V → ( { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ↔ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ ∅ ) ) |
27 |
23 26
|
mtbiri |
⊢ ( ¬ 𝐺 ∈ V → ¬ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) |
28 |
27
|
adantr |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑤 ∈ Word 𝑉 ) → ¬ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) |
29 |
28
|
intn3an3d |
⊢ ( ( ¬ 𝐺 ∈ V ∧ 𝑤 ∈ Word 𝑉 ) → ¬ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) ) |
30 |
29
|
ralrimiva |
⊢ ( ¬ 𝐺 ∈ V → ∀ 𝑤 ∈ Word 𝑉 ¬ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) ) |
31 |
|
rabeq0 |
⊢ ( { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) } = ∅ ↔ ∀ 𝑤 ∈ Word 𝑉 ¬ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) ) |
32 |
30 31
|
sylibr |
⊢ ( ¬ 𝐺 ∈ V → { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) } = ∅ ) |
33 |
22 32
|
eqtr4d |
⊢ ( ¬ 𝐺 ∈ V → ( ClWWalks ‘ 𝐺 ) = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) } ) |
34 |
21 33
|
pm2.61i |
⊢ ( ClWWalks ‘ 𝐺 ) = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) } |