Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
⊢ ( 𝑣 = 𝑋 → ( ( 𝑤 ‘ 0 ) = 𝑣 ↔ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
2 |
1
|
rabbidv |
⊢ ( 𝑣 = 𝑋 → { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } = { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) |
3 |
|
oveq1 |
⊢ ( 𝑛 = 0 → ( 𝑛 ClWWalksN 𝐺 ) = ( 0 ClWWalksN 𝐺 ) ) |
4 |
|
clwwlkn0 |
⊢ ( 0 ClWWalksN 𝐺 ) = ∅ |
5 |
3 4
|
eqtrdi |
⊢ ( 𝑛 = 0 → ( 𝑛 ClWWalksN 𝐺 ) = ∅ ) |
6 |
5
|
rabeqdv |
⊢ ( 𝑛 = 0 → { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } = { 𝑤 ∈ ∅ ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) |
7 |
|
clwwlknonmpo |
⊢ ( ClWWalksNOn ‘ 𝐺 ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) |
8 |
|
0ex |
⊢ ∅ ∈ V |
9 |
8
|
rabex |
⊢ { 𝑤 ∈ ∅ ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∈ V |
10 |
2 6 7 9
|
ovmpo |
⊢ ( ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 0 ∈ ℕ0 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) = { 𝑤 ∈ ∅ ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) |
11 |
|
rab0 |
⊢ { 𝑤 ∈ ∅ ∣ ( 𝑤 ‘ 0 ) = 𝑋 } = ∅ |
12 |
10 11
|
eqtrdi |
⊢ ( ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 0 ∈ ℕ0 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) = ∅ ) |
13 |
7
|
mpondm0 |
⊢ ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 0 ∈ ℕ0 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) = ∅ ) |
14 |
12 13
|
pm2.61i |
⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 0 ) = ∅ |