| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlkbp.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | elfvex | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  𝐺  ∈  V ) | 
						
							| 3 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 4 | 1 3 | isclwwlk | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  ↔  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ( ♯ ‘ 𝑊 )  −  1 ) ) { ( 𝑊 ‘ 𝑖 ) ,  ( 𝑊 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑊 ) ,  ( 𝑊 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 5 | 4 | simp1bi | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ ) ) | 
						
							| 6 |  | 3anass | ⊢ ( ( 𝐺  ∈  V  ∧  𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  ↔  ( 𝐺  ∈  V  ∧  ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ ) ) ) | 
						
							| 7 | 2 5 6 | sylanbrc | ⊢ ( 𝑊  ∈  ( ClWWalks ‘ 𝐺 )  →  ( 𝐺  ∈  V  ∧  𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ ) ) |