Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlkbp.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
elfvex |
⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → 𝐺 ∈ V ) |
3 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
4 |
1 3
|
isclwwlk |
⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
5 |
4
|
simp1bi |
⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ) |
6 |
|
3anass |
⊢ ( ( 𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ↔ ( 𝐺 ∈ V ∧ ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ) ) |
7 |
2 5 6
|
sylanbrc |
⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ) |