| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1l |
⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 2 |
|
simp1l |
⊢ ( ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 3 |
|
ccatcl |
⊢ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐴 ++ 𝐵 ) ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 5 |
|
ccat0 |
⊢ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( 𝐴 ++ 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
| 6 |
5
|
adantlr |
⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( 𝐴 ++ 𝐵 ) = ∅ ↔ ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) ) ) |
| 7 |
|
simpr |
⊢ ( ( 𝐴 = ∅ ∧ 𝐵 = ∅ ) → 𝐵 = ∅ ) |
| 8 |
6 7
|
biimtrdi |
⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( 𝐴 ++ 𝐵 ) = ∅ → 𝐵 = ∅ ) ) |
| 9 |
8
|
necon3d |
⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( 𝐵 ≠ ∅ → ( 𝐴 ++ 𝐵 ) ≠ ∅ ) ) |
| 10 |
9
|
impr |
⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ) → ( 𝐴 ++ 𝐵 ) ≠ ∅ ) |
| 11 |
10
|
3ad2antr1 |
⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐴 ++ 𝐵 ) ≠ ∅ ) |
| 12 |
11
|
3ad2antl1 |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝐴 ++ 𝐵 ) ≠ ∅ ) |
| 13 |
4 12
|
jca |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝐴 ++ 𝐵 ) ≠ ∅ ) ) |
| 14 |
13
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( ( 𝐴 ++ 𝐵 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝐴 ++ 𝐵 ) ≠ ∅ ) ) |
| 15 |
|
clwwlkccatlem |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) { ( ( 𝐴 ++ 𝐵 ) ‘ 𝑖 ) , ( ( 𝐴 ++ 𝐵 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 16 |
|
simpl1l |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 17 |
|
simpr1l |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 18 |
|
simpr1r |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → 𝐵 ≠ ∅ ) |
| 19 |
|
lswccatn0lsw |
⊢ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( lastS ‘ 𝐵 ) ) |
| 20 |
16 17 18 19
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( lastS ‘ 𝐵 ) ) |
| 21 |
20
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) = ( lastS ‘ 𝐵 ) ) |
| 22 |
|
hashgt0 |
⊢ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) → 0 < ( ♯ ‘ 𝐴 ) ) |
| 23 |
22
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → 0 < ( ♯ ‘ 𝐴 ) ) |
| 24 |
23
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → 0 < ( ♯ ‘ 𝐴 ) ) |
| 25 |
|
ccatfv0 |
⊢ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 0 < ( ♯ ‘ 𝐴 ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
| 26 |
16 17 24 25
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
| 27 |
26
|
3adant3 |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
| 28 |
|
simp3 |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 29 |
27 28
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 30 |
21 29
|
preq12d |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → { ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) , ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) } = { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ) |
| 31 |
|
simp23 |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 32 |
30 31
|
eqeltrd |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → { ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) , ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 33 |
14 15 32
|
3jca |
⊢ ( ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( ( ( 𝐴 ++ 𝐵 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝐴 ++ 𝐵 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) { ( ( 𝐴 ++ 𝐵 ) ‘ 𝑖 ) , ( ( 𝐴 ++ 𝐵 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) , ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 34 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 35 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
| 36 |
34 35
|
isclwwlk |
⊢ ( 𝐴 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 37 |
34 35
|
isclwwlk |
⊢ ( 𝐵 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 38 |
|
biid |
⊢ ( ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ↔ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 39 |
36 37 38
|
3anbi123i |
⊢ ( ( 𝐴 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝐵 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ↔ ( ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐴 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐴 ) − 1 ) ) { ( 𝐴 ‘ 𝑖 ) , ( 𝐴 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐴 ) , ( 𝐴 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ( 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ≠ ∅ ) ∧ ∀ 𝑗 ∈ ( 0 ..^ ( ( ♯ ‘ 𝐵 ) − 1 ) ) { ( 𝐵 ‘ 𝑗 ) , ( 𝐵 ‘ ( 𝑗 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝐵 ) , ( 𝐵 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) ) |
| 40 |
34 35
|
isclwwlk |
⊢ ( ( 𝐴 ++ 𝐵 ) ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( ( 𝐴 ++ 𝐵 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝐴 ++ 𝐵 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) − 1 ) ) { ( ( 𝐴 ++ 𝐵 ) ‘ 𝑖 ) , ( ( 𝐴 ++ 𝐵 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ ( 𝐴 ++ 𝐵 ) ) , ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 41 |
33 39 40
|
3imtr4i |
⊢ ( ( 𝐴 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝐵 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ++ 𝐵 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |