Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlkf1o.d |
⊢ 𝐷 = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) } |
2 |
|
clwwlkf1o.f |
⊢ 𝐹 = ( 𝑡 ∈ 𝐷 ↦ ( 𝑡 prefix 𝑁 ) ) |
3 |
1 2
|
clwwlkf |
⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝐷 ⟶ ( 𝑁 ClWWalksN 𝐺 ) ) |
4 |
1 2
|
clwwlkfv |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝐹 ‘ 𝑥 ) = ( 𝑥 prefix 𝑁 ) ) |
5 |
1 2
|
clwwlkfv |
⊢ ( 𝑦 ∈ 𝐷 → ( 𝐹 ‘ 𝑦 ) = ( 𝑦 prefix 𝑁 ) ) |
6 |
4 5
|
eqeqan12d |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) ) |
7 |
6
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) ) |
8 |
|
fveq2 |
⊢ ( 𝑤 = 𝑥 → ( lastS ‘ 𝑤 ) = ( lastS ‘ 𝑥 ) ) |
9 |
|
fveq1 |
⊢ ( 𝑤 = 𝑥 → ( 𝑤 ‘ 0 ) = ( 𝑥 ‘ 0 ) ) |
10 |
8 9
|
eqeq12d |
⊢ ( 𝑤 = 𝑥 → ( ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) ↔ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) |
11 |
10 1
|
elrab2 |
⊢ ( 𝑥 ∈ 𝐷 ↔ ( 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) |
12 |
|
fveq2 |
⊢ ( 𝑤 = 𝑦 → ( lastS ‘ 𝑤 ) = ( lastS ‘ 𝑦 ) ) |
13 |
|
fveq1 |
⊢ ( 𝑤 = 𝑦 → ( 𝑤 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
14 |
12 13
|
eqeq12d |
⊢ ( 𝑤 = 𝑦 → ( ( lastS ‘ 𝑤 ) = ( 𝑤 ‘ 0 ) ↔ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ) |
15 |
14 1
|
elrab2 |
⊢ ( 𝑦 ∈ 𝐷 ↔ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ) |
16 |
11 15
|
anbi12i |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ↔ ( ( 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ∧ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ) ) |
17 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
18 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
19 |
17 18
|
wwlknp |
⊢ ( 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑥 ‘ 𝑖 ) , ( 𝑥 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
20 |
17 18
|
wwlknp |
⊢ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
21 |
|
simprlr |
⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) |
22 |
|
simpllr |
⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) |
23 |
21 22
|
eqtr4d |
⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
24 |
23
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ) |
25 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
26 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
27 |
|
pncan |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
28 |
27
|
eqcomd |
⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → 𝑁 = ( ( 𝑁 + 1 ) − 1 ) ) |
29 |
25 26 28
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → 𝑁 = ( ( 𝑁 + 1 ) − 1 ) ) |
30 |
|
oveq1 |
⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑥 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) |
31 |
30
|
eqcomd |
⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( ( 𝑁 + 1 ) − 1 ) = ( ( ♯ ‘ 𝑥 ) − 1 ) ) |
32 |
29 31
|
sylan9eqr |
⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ ) → 𝑁 = ( ( ♯ ‘ 𝑥 ) − 1 ) ) |
33 |
32
|
oveq2d |
⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑥 prefix 𝑁 ) = ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) |
34 |
32
|
oveq2d |
⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ ) → ( 𝑦 prefix 𝑁 ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) |
35 |
33 34
|
eqeq12d |
⊢ ( ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) ) |
36 |
35
|
ex |
⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) ) ) |
37 |
36
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) ) ) |
38 |
37
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) ) ) |
39 |
38
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) ) |
40 |
39
|
biimpa |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ) |
41 |
|
simpll |
⊢ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) |
42 |
|
simpll |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ) |
43 |
41 42
|
anim12ci |
⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ) |
44 |
43
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ) |
45 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
46 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
47 |
45 46
|
jctil |
⊢ ( 𝑁 ∈ ℕ → ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
48 |
47
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) |
49 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
50 |
49
|
lep1d |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≤ ( 𝑁 + 1 ) ) |
51 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( 𝑁 ≤ ( ♯ ‘ 𝑥 ) ↔ 𝑁 ≤ ( 𝑁 + 1 ) ) ) |
52 |
50 51
|
syl5ibr |
⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ → 𝑁 ≤ ( ♯ ‘ 𝑥 ) ) ) |
53 |
52
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → 𝑁 ≤ ( ♯ ‘ 𝑥 ) ) ) |
54 |
53
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( 𝑁 ∈ ℕ → 𝑁 ≤ ( ♯ ‘ 𝑥 ) ) ) |
55 |
54
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → 𝑁 ≤ ( ♯ ‘ 𝑥 ) ) |
56 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) → ( 𝑁 ≤ ( ♯ ‘ 𝑦 ) ↔ 𝑁 ≤ ( 𝑁 + 1 ) ) ) |
57 |
50 56
|
syl5ibr |
⊢ ( ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ → 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) ) |
58 |
57
|
ad2antlr |
⊢ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( 𝑁 ∈ ℕ → 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) ) |
60 |
59
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) |
61 |
|
pfxval |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑥 prefix 𝑁 ) = ( 𝑥 substr 〈 0 , 𝑁 〉 ) ) |
62 |
61
|
ad2ant2rl |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑥 prefix 𝑁 ) = ( 𝑥 substr 〈 0 , 𝑁 〉 ) ) |
63 |
|
pfxval |
⊢ ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑦 prefix 𝑁 ) = ( 𝑦 substr 〈 0 , 𝑁 〉 ) ) |
64 |
63
|
ad2ant2l |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑦 prefix 𝑁 ) = ( 𝑦 substr 〈 0 , 𝑁 〉 ) ) |
65 |
62 64
|
eqeq12d |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 substr 〈 0 , 𝑁 〉 ) = ( 𝑦 substr 〈 0 , 𝑁 〉 ) ) ) |
66 |
65
|
3adant3 |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑥 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ( 𝑥 substr 〈 0 , 𝑁 〉 ) = ( 𝑦 substr 〈 0 , 𝑁 〉 ) ) ) |
67 |
|
swrdspsleq |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑥 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑥 substr 〈 0 , 𝑁 〉 ) = ( 𝑦 substr 〈 0 , 𝑁 〉 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) |
68 |
66 67
|
bitrd |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) ∧ ( 0 ∈ ℕ0 ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝑁 ≤ ( ♯ ‘ 𝑥 ) ∧ 𝑁 ≤ ( ♯ ‘ 𝑦 ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) |
69 |
44 48 55 60 68
|
syl112anc |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ) ) |
70 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ 𝑁 ) ↔ 𝑁 ∈ ℕ ) |
71 |
70
|
biimpri |
⊢ ( 𝑁 ∈ ℕ → 0 ∈ ( 0 ..^ 𝑁 ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → 0 ∈ ( 0 ..^ 𝑁 ) ) |
73 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑥 ‘ 𝑖 ) = ( 𝑥 ‘ 0 ) ) |
74 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝑦 ‘ 𝑖 ) = ( 𝑦 ‘ 0 ) ) |
75 |
73 74
|
eqeq12d |
⊢ ( 𝑖 = 0 → ( ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) ↔ ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
76 |
75
|
rspcv |
⊢ ( 0 ∈ ( 0 ..^ 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
77 |
72 76
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑥 ‘ 𝑖 ) = ( 𝑦 ‘ 𝑖 ) → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
78 |
69 77
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
79 |
78
|
imp |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) |
80 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) |
81 |
|
simpr |
⊢ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) |
82 |
80 81
|
eqeqan12rd |
⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( ( lastS ‘ 𝑥 ) = ( lastS ‘ 𝑦 ) ↔ ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
83 |
82
|
ad2antlr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( ( lastS ‘ 𝑥 ) = ( lastS ‘ 𝑦 ) ↔ ( 𝑥 ‘ 0 ) = ( 𝑦 ‘ 0 ) ) ) |
84 |
79 83
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( lastS ‘ 𝑥 ) = ( lastS ‘ 𝑦 ) ) |
85 |
24 40 84
|
jca32 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ∧ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( lastS ‘ 𝑦 ) ) ) ) |
86 |
42
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ) |
87 |
86
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ) |
88 |
41
|
adantr |
⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) |
89 |
88
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ) |
90 |
|
1red |
⊢ ( 𝑁 ∈ ℕ → 1 ∈ ℝ ) |
91 |
|
nngt0 |
⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) |
92 |
|
0lt1 |
⊢ 0 < 1 |
93 |
92
|
a1i |
⊢ ( 𝑁 ∈ ℕ → 0 < 1 ) |
94 |
49 90 91 93
|
addgt0d |
⊢ ( 𝑁 ∈ ℕ → 0 < ( 𝑁 + 1 ) ) |
95 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( 0 < ( ♯ ‘ 𝑥 ) ↔ 0 < ( 𝑁 + 1 ) ) ) |
96 |
94 95
|
syl5ibr |
⊢ ( ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) → ( 𝑁 ∈ ℕ → 0 < ( ♯ ‘ 𝑥 ) ) ) |
97 |
96
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → 0 < ( ♯ ‘ 𝑥 ) ) ) |
98 |
97
|
adantl |
⊢ ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( 𝑁 ∈ ℕ → 0 < ( ♯ ‘ 𝑥 ) ) ) |
99 |
98
|
impcom |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → 0 < ( ♯ ‘ 𝑥 ) ) |
100 |
87 89 99
|
3jca |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 0 < ( ♯ ‘ 𝑥 ) ) ) |
101 |
100
|
adantr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 0 < ( ♯ ‘ 𝑥 ) ) ) |
102 |
|
pfxsuff1eqwrdeq |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 0 < ( ♯ ‘ 𝑥 ) ) → ( 𝑥 = 𝑦 ↔ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ∧ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( lastS ‘ 𝑦 ) ) ) ) ) |
103 |
101 102
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → ( 𝑥 = 𝑦 ↔ ( ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝑦 ) ∧ ( ( 𝑥 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) = ( 𝑦 prefix ( ( ♯ ‘ 𝑥 ) − 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( lastS ‘ 𝑦 ) ) ) ) ) |
104 |
85 103
|
mpbird |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) ) ∧ ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) ) → 𝑥 = 𝑦 ) |
105 |
104
|
exp31 |
⊢ ( 𝑁 ∈ ℕ → ( ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ∧ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) |
106 |
105
|
expdcom |
⊢ ( ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) |
107 |
106
|
ex |
⊢ ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ) → ( ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) → ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) ) |
108 |
107
|
3adant3 |
⊢ ( ( 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑦 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) → ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) ) |
109 |
20 108
|
syl |
⊢ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) → ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) ) |
110 |
109
|
imp |
⊢ ( ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) |
111 |
110
|
expdcom |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ) → ( ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) → ( ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) ) |
112 |
111
|
3adant3 |
⊢ ( ( 𝑥 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑥 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑥 ‘ 𝑖 ) , ( 𝑥 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) → ( ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) ) |
113 |
19 112
|
syl |
⊢ ( 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) → ( ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) ) ) |
114 |
113
|
imp31 |
⊢ ( ( ( 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ∧ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ) → ( 𝑁 ∈ ℕ → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) |
115 |
114
|
com12 |
⊢ ( 𝑁 ∈ ℕ → ( ( ( 𝑥 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑥 ) = ( 𝑥 ‘ 0 ) ) ∧ ( 𝑦 ∈ ( 𝑁 WWalksN 𝐺 ) ∧ ( lastS ‘ 𝑦 ) = ( 𝑦 ‘ 0 ) ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) |
116 |
16 115
|
syl5bi |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) ) |
117 |
116
|
imp |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( ( 𝑥 prefix 𝑁 ) = ( 𝑦 prefix 𝑁 ) → 𝑥 = 𝑦 ) ) |
118 |
7 117
|
sylbid |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝑥 ∈ 𝐷 ∧ 𝑦 ∈ 𝐷 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
119 |
118
|
ralrimivva |
⊢ ( 𝑁 ∈ ℕ → ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) |
120 |
|
dff13 |
⊢ ( 𝐹 : 𝐷 –1-1→ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝐹 : 𝐷 ⟶ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∀ 𝑥 ∈ 𝐷 ∀ 𝑦 ∈ 𝐷 ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
121 |
3 119 120
|
sylanbrc |
⊢ ( 𝑁 ∈ ℕ → 𝐹 : 𝐷 –1-1→ ( 𝑁 ClWWalksN 𝐺 ) ) |