Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
wwlknp |
⊢ ( 𝑊 ∈ ( 𝑀 WWalksN 𝐺 ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
4 |
|
pfxcl |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ) |
5 |
4
|
adantr |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) → ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ) |
7 |
|
simpll |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
8 |
|
simprl |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) |
9 |
|
eluz2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀 ) ) |
10 |
|
zre |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) |
11 |
|
zre |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) |
12 |
|
id |
⊢ ( 𝑁 ≤ 𝑀 → 𝑁 ≤ 𝑀 ) |
13 |
10 11 12
|
3anim123i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀 ) → ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ≤ 𝑀 ) ) |
14 |
9 13
|
sylbi |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ≤ 𝑀 ) ) |
15 |
|
letrp1 |
⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ≤ 𝑀 ) → 𝑁 ≤ ( 𝑀 + 1 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ ( 𝑀 + 1 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ≤ ( 𝑀 + 1 ) ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ≤ ( 𝑀 + 1 ) ) |
19 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ↔ 𝑁 ≤ ( 𝑀 + 1 ) ) ) |
20 |
19
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ↔ 𝑁 ≤ ( 𝑀 + 1 ) ) ) |
21 |
18 20
|
mpbird |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) |
22 |
|
pfxn0 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝑁 ) ≠ ∅ ) |
23 |
7 8 21 22
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑊 prefix 𝑁 ) ≠ ∅ ) |
24 |
6 23
|
jca |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ) |
25 |
24
|
3adantl3 |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ) |
26 |
25
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ) |
27 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
28 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
29 |
|
eluzmn |
⊢ ( ( 𝑁 ∈ ℤ ∧ 1 ∈ ℕ0 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
30 |
27 28 29
|
sylancl |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
31 |
|
uzss |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
32 |
30 31
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
33 |
32
|
sselda |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
34 |
|
fzoss2 |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑀 ) ) |
35 |
33 34
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑀 ) ) |
36 |
35
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑀 ) ) |
37 |
|
ssralv |
⊢ ( ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑀 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
38 |
36 37
|
syl |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
39 |
38
|
3exp |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
40 |
39
|
com34 |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
41 |
40
|
3imp1 |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
42 |
41
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
43 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
44 |
|
elnn0uz |
⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
45 |
43 44
|
sylib |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
46 |
|
eluzfz |
⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( 0 ... 𝑀 ) ) |
47 |
45 46
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( 0 ... 𝑀 ) ) |
48 |
|
fzelp1 |
⊢ ( 𝑁 ∈ ( 0 ... 𝑀 ) → 𝑁 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) |
49 |
47 48
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) |
50 |
49
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) |
51 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( 𝑀 + 1 ) ) ) |
52 |
51
|
eleq2d |
⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ 𝑁 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) ) |
53 |
52
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ 𝑁 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) ) |
54 |
50 53
|
mpbird |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
55 |
|
pfxlen |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) = 𝑁 ) |
56 |
7 54 55
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) = 𝑁 ) |
57 |
56
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) = ( 𝑁 − 1 ) ) |
58 |
57
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) = ( 0 ..^ ( 𝑁 − 1 ) ) ) |
59 |
58
|
raleqdv |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
60 |
7
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
61 |
54
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
62 |
30
|
ad2antrl |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
63 |
|
fzoss2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
64 |
62 63
|
syl |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
65 |
64
|
sselda |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑁 ) ) |
66 |
|
pfxfv |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) |
67 |
60 61 65 66
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) |
68 |
27
|
ad2antrl |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ℤ ) |
69 |
|
elfzom1elp1fzo |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝑖 + 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
70 |
68 69
|
sylan |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝑖 + 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
71 |
|
pfxfv |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) = ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
72 |
60 61 70 71
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) = ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
73 |
67 72
|
preq12d |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } = { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ) |
74 |
73
|
eleq1d |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
75 |
74
|
ralbidva |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
76 |
59 75
|
bitrd |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
77 |
76
|
3adantl3 |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
78 |
77
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
79 |
42 78
|
mpbird |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
80 |
|
elfz1uz |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( 1 ... 𝑀 ) ) |
81 |
|
fzelp1 |
⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) → 𝑁 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) |
82 |
80 81
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) |
83 |
82
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) |
84 |
|
oveq2 |
⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( 1 ... ( ♯ ‘ 𝑊 ) ) = ( 1 ... ( 𝑀 + 1 ) ) ) |
85 |
84
|
eleq2d |
⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ↔ 𝑁 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
86 |
85
|
ad2antlr |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ↔ 𝑁 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
87 |
83 86
|
mpbird |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
88 |
|
pfxfvlsw |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |
89 |
|
pfxfv0 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
90 |
88 89
|
preq12d |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ) |
91 |
7 87 90
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ) |
92 |
91
|
3adantl3 |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ) |
93 |
92
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ) |
94 |
|
fz1fzo0m1 |
⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) |
95 |
80 94
|
syl |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) |
96 |
95
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) |
97 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 = ( 𝑁 − 1 ) ) → 𝑖 = ( 𝑁 − 1 ) ) |
98 |
97
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 = ( 𝑁 − 1 ) ) → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |
99 |
|
oveq1 |
⊢ ( 𝑖 = ( 𝑁 − 1 ) → ( 𝑖 + 1 ) = ( ( 𝑁 − 1 ) + 1 ) ) |
100 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
101 |
|
npcan1 |
⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
102 |
100 101
|
syl |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
103 |
99 102
|
sylan9eqr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 = ( 𝑁 − 1 ) ) → ( 𝑖 + 1 ) = 𝑁 ) |
104 |
103
|
fveq2d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 = ( 𝑁 − 1 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) = ( 𝑊 ‘ 𝑁 ) ) |
105 |
98 104
|
preq12d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 = ( 𝑁 − 1 ) ) → { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ) |
106 |
105
|
eleq1d |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 = ( 𝑁 − 1 ) ) → ( { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
107 |
106
|
ex |
⊢ ( 𝑁 ∈ ℕ → ( 𝑖 = ( 𝑁 − 1 ) → ( { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
108 |
107
|
adantr |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑖 = ( 𝑁 − 1 ) → ( { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
109 |
108
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑖 = ( 𝑁 − 1 ) → ( { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
110 |
109
|
imp |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 = ( 𝑁 − 1 ) ) → ( { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
111 |
96 110
|
rspcdv |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
112 |
111
|
3exp |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
113 |
112
|
com34 |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
114 |
113
|
3imp1 |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) |
115 |
114
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) |
116 |
|
preq2 |
⊢ ( ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ) |
117 |
116
|
eleq1d |
⊢ ( ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) → ( { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
118 |
117
|
adantl |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
119 |
115 118
|
mpbid |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
120 |
93 119
|
eqeltrd |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
121 |
26 79 120
|
3jca |
⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
122 |
121
|
exp31 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) → ( ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
123 |
122
|
3imp21 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
124 |
1 2
|
isclwwlk |
⊢ ( ( 𝑊 prefix 𝑁 ) ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
125 |
123 124
|
sylibr |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( 𝑊 prefix 𝑁 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |
126 |
47
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 0 ... 𝑀 ) ) |
127 |
126 48
|
syl |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) |
128 |
127 53
|
mpbird |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
129 |
7 128
|
jca |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
130 |
129
|
ex |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
131 |
130
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
132 |
131
|
impcom |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
133 |
132
|
3adant3 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
134 |
133 55
|
syl |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) = 𝑁 ) |
135 |
|
isclwwlkn |
⊢ ( ( 𝑊 prefix 𝑁 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( ( 𝑊 prefix 𝑁 ) ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) = 𝑁 ) ) |
136 |
125 134 135
|
sylanbrc |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( 𝑊 prefix 𝑁 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
137 |
3 136
|
syl3an2 |
⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑊 ∈ ( 𝑀 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( 𝑊 prefix 𝑁 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |