Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlkn |
⊢ ( 0 ClWWalksN 𝐺 ) = { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 0 } |
2 |
|
rabeq0 |
⊢ ( { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 0 } = ∅ ↔ ∀ 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ¬ ( ♯ ‘ 𝑤 ) = 0 ) |
3 |
|
0re |
⊢ 0 ∈ ℝ |
4 |
3
|
ltnri |
⊢ ¬ 0 < 0 |
5 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝑤 ) = 0 → ( 0 < ( ♯ ‘ 𝑤 ) ↔ 0 < 0 ) ) |
6 |
4 5
|
mtbiri |
⊢ ( ( ♯ ‘ 𝑤 ) = 0 → ¬ 0 < ( ♯ ‘ 𝑤 ) ) |
7 |
|
clwwlkgt0 |
⊢ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → 0 < ( ♯ ‘ 𝑤 ) ) |
8 |
6 7
|
nsyl3 |
⊢ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ¬ ( ♯ ‘ 𝑤 ) = 0 ) |
9 |
2 8
|
mprgbir |
⊢ { 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∣ ( ♯ ‘ 𝑤 ) = 0 } = ∅ |
10 |
1 9
|
eqtri |
⊢ ( 0 ClWWalksN 𝐺 ) = ∅ |