Metamath Proof Explorer


Theorem clwwlknbp

Description: Basic properties of a closed walk of a fixed length as word. (Contributed by AV, 30-Apr-2021) (Proof shortened by AV, 22-Mar-2022)

Ref Expression
Hypothesis clwwlknwrd.v 𝑉 = ( Vtx ‘ 𝐺 )
Assertion clwwlknbp ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) )

Proof

Step Hyp Ref Expression
1 clwwlknwrd.v 𝑉 = ( Vtx ‘ 𝐺 )
2 1 clwwlknwrd ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑊 ∈ Word 𝑉 )
3 clwwlknlen ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ♯ ‘ 𝑊 ) = 𝑁 )
4 2 3 jca ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) )