| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isclwwlkn |
⊢ ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ↔ ( 𝐴 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐴 ) = 𝑀 ) ) |
| 2 |
|
isclwwlkn |
⊢ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝐵 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐵 ) = 𝑁 ) ) |
| 3 |
|
biid |
⊢ ( ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ↔ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 4 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐴 ) = 𝑀 ) → 𝐴 ∈ ( ClWWalks ‘ 𝐺 ) ) |
| 5 |
|
simpl |
⊢ ( ( 𝐵 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐵 ) = 𝑁 ) → 𝐵 ∈ ( ClWWalks ‘ 𝐺 ) ) |
| 6 |
|
id |
⊢ ( ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
| 7 |
|
clwwlkccat |
⊢ ( ( 𝐴 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝐵 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ++ 𝐵 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |
| 8 |
4 5 6 7
|
syl3an |
⊢ ( ( ( 𝐴 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐴 ) = 𝑀 ) ∧ ( 𝐵 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝐵 ) = 𝑁 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ++ 𝐵 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |
| 9 |
1 2 3 8
|
syl3anb |
⊢ ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ++ 𝐵 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |
| 10 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 11 |
10
|
clwwlknwrd |
⊢ ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) → 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 12 |
10
|
clwwlknwrd |
⊢ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 13 |
|
ccatlen |
⊢ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 14 |
11 12 13
|
syl2an |
⊢ ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 15 |
|
clwwlknlen |
⊢ ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) → ( ♯ ‘ 𝐴 ) = 𝑀 ) |
| 16 |
|
clwwlknlen |
⊢ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ♯ ‘ 𝐵 ) = 𝑁 ) |
| 17 |
15 16
|
oveqan12d |
⊢ ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) = ( 𝑀 + 𝑁 ) ) |
| 18 |
14 17
|
eqtrd |
⊢ ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( 𝑀 + 𝑁 ) ) |
| 19 |
18
|
3adant3 |
⊢ ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( 𝑀 + 𝑁 ) ) |
| 20 |
|
isclwwlkn |
⊢ ( ( 𝐴 ++ 𝐵 ) ∈ ( ( 𝑀 + 𝑁 ) ClWWalksN 𝐺 ) ↔ ( ( 𝐴 ++ 𝐵 ) ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( 𝑀 + 𝑁 ) ) ) |
| 21 |
9 19 20
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ++ 𝐵 ) ∈ ( ( 𝑀 + 𝑁 ) ClWWalksN 𝐺 ) ) |