| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlknclwwlkdif.a |
⊢ 𝐴 = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } |
| 2 |
|
clwwlknclwwlkdif.b |
⊢ 𝐵 = ( 𝑋 ( 𝑁 WWalksNOn 𝐺 ) 𝑋 ) |
| 3 |
|
clwwlknclwwlkdif.c |
⊢ 𝐶 = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } |
| 4 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 5 |
4
|
iswwlksnon |
⊢ ( 𝑋 ( 𝑁 WWalksNOn 𝐺 ) 𝑋 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) } |
| 6 |
2 5
|
eqtri |
⊢ 𝐵 = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) } |
| 7 |
3 6
|
difeq12i |
⊢ ( 𝐶 ∖ 𝐵 ) = ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∖ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) } ) |
| 8 |
|
difrab |
⊢ ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∖ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) } ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ¬ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) ) } |
| 9 |
|
annotanannot |
⊢ ( ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ¬ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) ) ↔ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ¬ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) ) |
| 10 |
|
df-ne |
⊢ ( ( 𝑤 ‘ 𝑁 ) ≠ 𝑋 ↔ ¬ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) |
| 11 |
|
wwlknlsw |
⊢ ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑤 ‘ 𝑁 ) = ( lastS ‘ 𝑤 ) ) |
| 12 |
11
|
neeq1d |
⊢ ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( 𝑤 ‘ 𝑁 ) ≠ 𝑋 ↔ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) ) |
| 13 |
10 12
|
bitr3id |
⊢ ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ¬ ( 𝑤 ‘ 𝑁 ) = 𝑋 ↔ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) ) |
| 14 |
13
|
anbi2d |
⊢ ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ¬ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) ↔ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) ) ) |
| 15 |
9 14
|
bitrid |
⊢ ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ¬ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) ) ↔ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) ) ) |
| 16 |
15
|
rabbiia |
⊢ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ¬ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) ) } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } |
| 17 |
7 8 16
|
3eqtrri |
⊢ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } = ( 𝐶 ∖ 𝐵 ) |
| 18 |
1 17
|
eqtri |
⊢ 𝐴 = ( 𝐶 ∖ 𝐵 ) |