| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							clwwlknclwwlkdif.a | 
							⊢ 𝐴  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( lastS ‘ 𝑤 )  ≠  𝑋 ) }  | 
						
						
							| 2 | 
							
								
							 | 
							clwwlknclwwlkdif.b | 
							⊢ 𝐵  =  ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  | 
						
						
							| 3 | 
							
								
							 | 
							clwwlknclwwlkdifnum.v | 
							⊢ 𝑉  =  ( Vtx ‘ 𝐺 )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  | 
						
						
							| 5 | 
							
								1 2 4
							 | 
							clwwlknclwwlkdif | 
							⊢ 𝐴  =  ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∖  𝐵 )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2i | 
							⊢ ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∖  𝐵 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ 𝐴 )  =  ( ♯ ‘ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∖  𝐵 ) ) )  | 
						
						
							| 8 | 
							
								3
							 | 
							eleq1i | 
							⊢ ( 𝑉  ∈  Fin  ↔  ( Vtx ‘ 𝐺 )  ∈  Fin )  | 
						
						
							| 9 | 
							
								8
							 | 
							biimpi | 
							⊢ ( 𝑉  ∈  Fin  →  ( Vtx ‘ 𝐺 )  ∈  Fin )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantl | 
							⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  →  ( Vtx ‘ 𝐺 )  ∈  Fin )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( Vtx ‘ 𝐺 )  ∈  Fin )  | 
						
						
							| 12 | 
							
								
							 | 
							wwlksnfi | 
							⊢ ( ( Vtx ‘ 𝐺 )  ∈  Fin  →  ( 𝑁  WWalksN  𝐺 )  ∈  Fin )  | 
						
						
							| 13 | 
							
								
							 | 
							rabfi | 
							⊢ ( ( 𝑁  WWalksN  𝐺 )  ∈  Fin  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∈  Fin )  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							3syl | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∈  Fin )  | 
						
						
							| 15 | 
							
								3
							 | 
							iswwlksnon | 
							⊢ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) }  | 
						
						
							| 16 | 
							
								
							 | 
							ancom | 
							⊢ ( ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 )  ↔  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							rabbii | 
							⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 0 )  =  𝑋  ∧  ( 𝑤 ‘ 𝑁 )  =  𝑋 ) }  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  | 
						
						
							| 18 | 
							
								15 17
							 | 
							eqtri | 
							⊢ ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  | 
						
						
							| 19 | 
							
								18
							 | 
							a1i | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  ( 𝑋 ( 𝑁  WWalksNOn  𝐺 ) 𝑋 )  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } )  | 
						
						
							| 20 | 
							
								2 19
							 | 
							eqtrid | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  𝐵  =  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) } )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  →  ( 𝑤 ‘ 0 )  =  𝑋 )  | 
						
						
							| 22 | 
							
								21
							 | 
							a1i | 
							⊢ ( 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  →  ( ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 )  →  ( 𝑤 ‘ 0 )  =  𝑋 ) )  | 
						
						
							| 23 | 
							
								22
							 | 
							ss2rabi | 
							⊢ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( ( 𝑤 ‘ 𝑁 )  =  𝑋  ∧  ( 𝑤 ‘ 0 )  =  𝑋 ) }  ⊆  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  | 
						
						
							| 24 | 
							
								20 23
							 | 
							eqsstrdi | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  𝐵  ⊆  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantl | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝐵  ⊆  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  | 
						
						
							| 26 | 
							
								
							 | 
							hashssdif | 
							⊢ ( ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∈  Fin  ∧  𝐵  ⊆  { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  →  ( ♯ ‘ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∖  𝐵 ) )  =  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  −  ( ♯ ‘ 𝐵 ) ) )  | 
						
						
							| 27 | 
							
								14 25 26
							 | 
							syl2anc | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ ( { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 }  ∖  𝐵 ) )  =  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  −  ( ♯ ‘ 𝐵 ) ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  →  𝐺  RegUSGraph  𝐾 )  | 
						
						
							| 29 | 
							
								28
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝐺  RegUSGraph  𝐾 )  | 
						
						
							| 30 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  →  𝑉  ∈  Fin )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝑉  ∈  Fin )  | 
						
						
							| 32 | 
							
								
							 | 
							simpl | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  𝑋  ∈  𝑉 )  | 
						
						
							| 33 | 
							
								32
							 | 
							adantl | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝑋  ∈  𝑉 )  | 
						
						
							| 34 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 )  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 35 | 
							
								34
							 | 
							adantl | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  𝑁  ∈  ℕ0 )  | 
						
						
							| 36 | 
							
								3
							 | 
							rusgrnumwwlkg | 
							⊢ ( ( 𝐺  RegUSGraph  𝐾  ∧  ( 𝑉  ∈  Fin  ∧  𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  =  ( 𝐾 ↑ 𝑁 ) )  | 
						
						
							| 37 | 
							
								29 31 33 35 36
							 | 
							syl13anc | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  =  ( 𝐾 ↑ 𝑁 ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							oveq1d | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ( ♯ ‘ { 𝑤  ∈  ( 𝑁  WWalksN  𝐺 )  ∣  ( 𝑤 ‘ 0 )  =  𝑋 } )  −  ( ♯ ‘ 𝐵 ) )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ 𝐵 ) ) )  | 
						
						
							| 39 | 
							
								7 27 38
							 | 
							3eqtrd | 
							⊢ ( ( ( 𝐺  RegUSGraph  𝐾  ∧  𝑉  ∈  Fin )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑁  ∈  ℕ0 ) )  →  ( ♯ ‘ 𝐴 )  =  ( ( 𝐾 ↑ 𝑁 )  −  ( ♯ ‘ 𝐵 ) ) )  |