Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknclwwlkdif.a |
⊢ 𝐴 = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( lastS ‘ 𝑤 ) ≠ 𝑋 ) } |
2 |
|
clwwlknclwwlkdif.b |
⊢ 𝐵 = ( 𝑋 ( 𝑁 WWalksNOn 𝐺 ) 𝑋 ) |
3 |
|
clwwlknclwwlkdifnum.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
4 |
|
eqid |
⊢ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } |
5 |
1 2 4
|
clwwlknclwwlkdif |
⊢ 𝐴 = ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∖ 𝐵 ) |
6 |
5
|
fveq2i |
⊢ ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∖ 𝐵 ) ) |
7 |
6
|
a1i |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∖ 𝐵 ) ) ) |
8 |
3
|
eleq1i |
⊢ ( 𝑉 ∈ Fin ↔ ( Vtx ‘ 𝐺 ) ∈ Fin ) |
9 |
8
|
biimpi |
⊢ ( 𝑉 ∈ Fin → ( Vtx ‘ 𝐺 ) ∈ Fin ) |
10 |
9
|
adantl |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) → ( Vtx ‘ 𝐺 ) ∈ Fin ) |
11 |
10
|
adantr |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( Vtx ‘ 𝐺 ) ∈ Fin ) |
12 |
|
wwlksnfi |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( 𝑁 WWalksN 𝐺 ) ∈ Fin ) |
13 |
|
rabfi |
⊢ ( ( 𝑁 WWalksN 𝐺 ) ∈ Fin → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∈ Fin ) |
14 |
11 12 13
|
3syl |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∈ Fin ) |
15 |
3
|
iswwlksnon |
⊢ ( 𝑋 ( 𝑁 WWalksNOn 𝐺 ) 𝑋 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) } |
16 |
|
ancom |
⊢ ( ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) ↔ ( ( 𝑤 ‘ 𝑁 ) = 𝑋 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
17 |
16
|
rabbii |
⊢ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 0 ) = 𝑋 ∧ ( 𝑤 ‘ 𝑁 ) = 𝑋 ) } = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 𝑁 ) = 𝑋 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } |
18 |
15 17
|
eqtri |
⊢ ( 𝑋 ( 𝑁 WWalksNOn 𝐺 ) 𝑋 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 𝑁 ) = 𝑋 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } |
19 |
18
|
a1i |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 ( 𝑁 WWalksNOn 𝐺 ) 𝑋 ) = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 𝑁 ) = 𝑋 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } ) |
20 |
2 19
|
eqtrid |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 𝐵 = { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 𝑁 ) = 𝑋 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } ) |
21 |
|
simpr |
⊢ ( ( ( 𝑤 ‘ 𝑁 ) = 𝑋 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( 𝑤 ‘ 0 ) = 𝑋 ) |
22 |
21
|
a1i |
⊢ ( 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) → ( ( ( 𝑤 ‘ 𝑁 ) = 𝑋 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
23 |
22
|
ss2rabi |
⊢ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( ( 𝑤 ‘ 𝑁 ) = 𝑋 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } ⊆ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } |
24 |
20 23
|
eqsstrdi |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 𝐵 ⊆ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) |
25 |
24
|
adantl |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝐵 ⊆ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) |
26 |
|
hashssdif |
⊢ ( ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∈ Fin ∧ 𝐵 ⊆ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) → ( ♯ ‘ ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∖ 𝐵 ) ) = ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) − ( ♯ ‘ 𝐵 ) ) ) |
27 |
14 25 26
|
syl2anc |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( ♯ ‘ ( { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∖ 𝐵 ) ) = ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) − ( ♯ ‘ 𝐵 ) ) ) |
28 |
|
simpl |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) → 𝐺 RegUSGraph 𝐾 ) |
29 |
28
|
adantr |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝐺 RegUSGraph 𝐾 ) |
30 |
|
simpr |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) → 𝑉 ∈ Fin ) |
31 |
30
|
adantr |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑉 ∈ Fin ) |
32 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 𝑋 ∈ 𝑉 ) |
33 |
32
|
adantl |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑋 ∈ 𝑉 ) |
34 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
35 |
34
|
adantl |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → 𝑁 ∈ ℕ0 ) |
36 |
3
|
rusgrnumwwlkg |
⊢ ( ( 𝐺 RegUSGraph 𝐾 ∧ ( 𝑉 ∈ Fin ∧ 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) = ( 𝐾 ↑ 𝑁 ) ) |
37 |
29 31 33 35 36
|
syl13anc |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) = ( 𝐾 ↑ 𝑁 ) ) |
38 |
37
|
oveq1d |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( ( ♯ ‘ { 𝑤 ∈ ( 𝑁 WWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) − ( ♯ ‘ 𝐵 ) ) = ( ( 𝐾 ↑ 𝑁 ) − ( ♯ ‘ 𝐵 ) ) ) |
39 |
7 27 38
|
3eqtrd |
⊢ ( ( ( 𝐺 RegUSGraph 𝐾 ∧ 𝑉 ∈ Fin ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) ) → ( ♯ ‘ 𝐴 ) = ( ( 𝐾 ↑ 𝑁 ) − ( ♯ ‘ 𝐵 ) ) ) |