Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
1
|
fusgrvtxfi |
⊢ ( 𝐺 ∈ FinUSGraph → ( Vtx ‘ 𝐺 ) ∈ Fin ) |
3 |
2
|
adantr |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ ) → ( Vtx ‘ 𝐺 ) ∈ Fin ) |
4 |
|
eqid |
⊢ ( 𝑁 ClWWalksN 𝐺 ) = ( 𝑁 ClWWalksN 𝐺 ) |
5 |
|
eqid |
⊢ { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑢 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } = { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑢 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } |
6 |
4 5
|
qerclwwlknfi |
⊢ ( ( Vtx ‘ 𝐺 ) ∈ Fin → ( ( 𝑁 ClWWalksN 𝐺 ) / { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑢 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } ) ∈ Fin ) |
7 |
|
hashcl |
⊢ ( ( ( 𝑁 ClWWalksN 𝐺 ) / { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑢 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } ) ∈ Fin → ( ♯ ‘ ( ( 𝑁 ClWWalksN 𝐺 ) / { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑢 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } ) ) ∈ ℕ0 ) |
8 |
3 6 7
|
3syl |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ ) → ( ♯ ‘ ( ( 𝑁 ClWWalksN 𝐺 ) / { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑢 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } ) ) ∈ ℕ0 ) |
9 |
8
|
nn0zd |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ ) → ( ♯ ‘ ( ( 𝑁 ClWWalksN 𝐺 ) / { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑢 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } ) ) ∈ ℤ ) |
10 |
|
prmz |
⊢ ( 𝑁 ∈ ℙ → 𝑁 ∈ ℤ ) |
11 |
10
|
adantl |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ ) → 𝑁 ∈ ℤ ) |
12 |
|
dvdsmul2 |
⊢ ( ( ( ♯ ‘ ( ( 𝑁 ClWWalksN 𝐺 ) / { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑢 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } ) ) ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∥ ( ( ♯ ‘ ( ( 𝑁 ClWWalksN 𝐺 ) / { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑢 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } ) ) · 𝑁 ) ) |
13 |
9 11 12
|
syl2anc |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ ) → 𝑁 ∥ ( ( ♯ ‘ ( ( 𝑁 ClWWalksN 𝐺 ) / { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑢 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } ) ) · 𝑁 ) ) |
14 |
4 5
|
fusgrhashclwwlkn |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ ) → ( ♯ ‘ ( 𝑁 ClWWalksN 𝐺 ) ) = ( ( ♯ ‘ ( ( 𝑁 ClWWalksN 𝐺 ) / { 〈 𝑡 , 𝑢 〉 ∣ ( 𝑡 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑢 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑡 = ( 𝑢 cyclShift 𝑛 ) ) } ) ) · 𝑁 ) ) |
15 |
13 14
|
breqtrrd |
⊢ ( ( 𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℙ ) → 𝑁 ∥ ( ♯ ‘ ( 𝑁 ClWWalksN 𝐺 ) ) ) |