Step |
Hyp |
Ref |
Expression |
1 |
|
df-nel |
⊢ ( 𝐺 ∉ V ↔ ¬ 𝐺 ∈ V ) |
2 |
|
ianor |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ↔ ( ¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0 ) ) |
3 |
1 2
|
orbi12i |
⊢ ( ( 𝐺 ∉ V ∨ ¬ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) ↔ ( ¬ 𝐺 ∈ V ∨ ( ¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0 ) ) ) |
4 |
|
df-nel |
⊢ ( 𝑁 ∉ ℕ ↔ ¬ 𝑁 ∈ ℕ ) |
5 |
|
elnnne0 |
⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) |
6 |
4 5
|
xchbinx |
⊢ ( 𝑁 ∉ ℕ ↔ ¬ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) |
7 |
6
|
orbi2i |
⊢ ( ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ ) ↔ ( 𝐺 ∉ V ∨ ¬ ( 𝑁 ∈ ℕ0 ∧ 𝑁 ≠ 0 ) ) ) |
8 |
|
orass |
⊢ ( ( ( ¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0 ) ∨ ¬ 𝑁 ≠ 0 ) ↔ ( ¬ 𝐺 ∈ V ∨ ( ¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝑁 ≠ 0 ) ) ) |
9 |
3 7 8
|
3bitr4i |
⊢ ( ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ ) ↔ ( ( ¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0 ) ∨ ¬ 𝑁 ≠ 0 ) ) |
10 |
|
ianor |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ↔ ( ¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V ) ) |
11 |
|
orcom |
⊢ ( ( ¬ 𝑁 ∈ ℕ0 ∨ ¬ 𝐺 ∈ V ) ↔ ( ¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0 ) ) |
12 |
10 11
|
bitri |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) ↔ ( ¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0 ) ) |
13 |
|
df-clwwlkn |
⊢ ClWWalksN = ( 𝑛 ∈ ℕ0 , 𝑔 ∈ V ↦ { 𝑤 ∈ ( ClWWalks ‘ 𝑔 ) ∣ ( ♯ ‘ 𝑤 ) = 𝑛 } ) |
14 |
13
|
mpondm0 |
⊢ ( ¬ ( 𝑁 ∈ ℕ0 ∧ 𝐺 ∈ V ) → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |
15 |
12 14
|
sylbir |
⊢ ( ( ¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0 ) → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |
16 |
|
nne |
⊢ ( ¬ 𝑁 ≠ 0 ↔ 𝑁 = 0 ) |
17 |
|
oveq1 |
⊢ ( 𝑁 = 0 → ( 𝑁 ClWWalksN 𝐺 ) = ( 0 ClWWalksN 𝐺 ) ) |
18 |
|
clwwlkn0 |
⊢ ( 0 ClWWalksN 𝐺 ) = ∅ |
19 |
17 18
|
eqtrdi |
⊢ ( 𝑁 = 0 → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |
20 |
16 19
|
sylbi |
⊢ ( ¬ 𝑁 ≠ 0 → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |
21 |
15 20
|
jaoi |
⊢ ( ( ( ¬ 𝐺 ∈ V ∨ ¬ 𝑁 ∈ ℕ0 ) ∨ ¬ 𝑁 ≠ 0 ) → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |
22 |
9 21
|
sylbi |
⊢ ( ( 𝐺 ∉ V ∨ 𝑁 ∉ ℕ ) → ( 𝑁 ClWWalksN 𝐺 ) = ∅ ) |