Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
clwwlknp |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
4 |
|
lsw |
⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
5 |
|
fvoveq1 |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑊 ‘ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |
6 |
4 5
|
sylan9eq |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |
7 |
6
|
preq1d |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ) |
8 |
7
|
eleq1d |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
9 |
8
|
biimpd |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
10 |
9
|
a1d |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
11 |
10
|
3imp |
⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
12 |
3 11
|
syl |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
13 |
12
|
adantl |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
14 |
2
|
nbusgreledg |
⊢ ( 𝐺 ∈ USGraph → ( ( 𝑊 ‘ ( 𝑁 − 1 ) ) ∈ ( 𝐺 NeighbVtx ( 𝑊 ‘ 0 ) ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( ( 𝑊 ‘ ( 𝑁 − 1 ) ) ∈ ( 𝐺 NeighbVtx ( 𝑊 ‘ 0 ) ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
16 |
13 15
|
mpbird |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( 𝑊 ‘ ( 𝑁 − 1 ) ) ∈ ( 𝐺 NeighbVtx ( 𝑊 ‘ 0 ) ) ) |