Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq2 |
⊢ ( 𝑣 = 𝑋 → ( ( 𝑤 ‘ 0 ) = 𝑣 ↔ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
2 |
1
|
rabbidv |
⊢ ( 𝑣 = 𝑋 → { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } = { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) |
3 |
|
oveq1 |
⊢ ( 𝑛 = 𝑁 → ( 𝑛 ClWWalksN 𝐺 ) = ( 𝑁 ClWWalksN 𝐺 ) ) |
4 |
3
|
rabeqdv |
⊢ ( 𝑛 = 𝑁 → { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } = { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) |
5 |
|
clwwlknonmpo |
⊢ ( ClWWalksNOn ‘ 𝐺 ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) |
6 |
|
ovex |
⊢ ( 𝑁 ClWWalksN 𝐺 ) ∈ V |
7 |
6
|
rabex |
⊢ { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ∈ V |
8 |
2 4 5 7
|
ovmpo |
⊢ ( ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) |
9 |
5
|
mpondm0 |
⊢ ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = ∅ ) |
10 |
|
isclwwlkn |
⊢ ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = 𝑁 ) ) |
11 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
12 |
11
|
clwwlkbp |
⊢ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑤 ≠ ∅ ) ) |
13 |
|
fstwrdne |
⊢ ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑤 ≠ ∅ ) → ( 𝑤 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
14 |
13
|
3adant1 |
⊢ ( ( 𝐺 ∈ V ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑤 ≠ ∅ ) → ( 𝑤 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
15 |
12 14
|
syl |
⊢ ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝑤 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
16 |
15
|
adantr |
⊢ ( ( 𝑤 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑤 ) = 𝑁 ) → ( 𝑤 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
17 |
10 16
|
sylbi |
⊢ ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑤 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( 𝑤 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ) |
19 |
|
eleq1 |
⊢ ( ( 𝑤 ‘ 0 ) = 𝑋 → ( ( 𝑤 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ↔ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( ( 𝑤 ‘ 0 ) ∈ ( Vtx ‘ 𝐺 ) ↔ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) ) |
21 |
18 20
|
mpbid |
⊢ ( ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
22 |
|
clwwlknnn |
⊢ ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑁 ∈ ℕ ) |
23 |
22
|
nnnn0d |
⊢ ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑁 ∈ ℕ0 ) |
24 |
23
|
adantr |
⊢ ( ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → 𝑁 ∈ ℕ0 ) |
25 |
21 24
|
jca |
⊢ ( ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) ) |
26 |
25
|
ex |
⊢ ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ( 𝑤 ‘ 0 ) = 𝑋 → ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) ) ) |
27 |
26
|
con3rr3 |
⊢ ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ¬ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
28 |
27
|
ralrimiv |
⊢ ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ∀ 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ¬ ( 𝑤 ‘ 0 ) = 𝑋 ) |
29 |
|
rabeq0 |
⊢ ( { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } = ∅ ↔ ∀ 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ¬ ( 𝑤 ‘ 0 ) = 𝑋 ) |
30 |
28 29
|
sylibr |
⊢ ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } = ∅ ) |
31 |
9 30
|
eqtr4d |
⊢ ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) |
32 |
8 31
|
pm2.61i |
⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) = { 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } |