Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknon1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
clwwlknon1.c |
⊢ 𝐶 = ( ClWWalksNOn ‘ 𝐺 ) |
3 |
|
clwwlknon1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
4 |
2
|
oveqi |
⊢ ( 𝑋 𝐶 1 ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) |
5 |
4
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 𝐶 1 ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) |
6 |
|
clwwlknon |
⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = { 𝑤 ∈ ( 1 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } |
7 |
6
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = { 𝑤 ∈ ( 1 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) |
8 |
|
clwwlkn1 |
⊢ ( 𝑤 ∈ ( 1 ClWWalksN 𝐺 ) ↔ ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
9 |
8
|
anbi1i |
⊢ ( ( 𝑤 ∈ ( 1 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
10 |
1
|
eqcomi |
⊢ ( Vtx ‘ 𝐺 ) = 𝑉 |
11 |
10
|
wrdeqi |
⊢ Word ( Vtx ‘ 𝐺 ) = Word 𝑉 |
12 |
11
|
eleq2i |
⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ↔ 𝑤 ∈ Word 𝑉 ) |
13 |
12
|
biimpi |
⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) → 𝑤 ∈ Word 𝑉 ) |
14 |
13
|
3ad2ant2 |
⊢ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → 𝑤 ∈ Word 𝑉 ) |
15 |
14
|
ad2antrl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) → 𝑤 ∈ Word 𝑉 ) |
16 |
14
|
adantr |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → 𝑤 ∈ Word 𝑉 ) |
17 |
|
simpl1 |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( ♯ ‘ 𝑤 ) = 1 ) |
18 |
|
simpr |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( 𝑤 ‘ 0 ) = 𝑋 ) |
19 |
16 17 18
|
3jca |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 1 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
20 |
19
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 1 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
21 |
|
wrdl1s1 |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑤 = 〈“ 𝑋 ”〉 ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 1 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) ) |
22 |
21
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) → ( 𝑤 = 〈“ 𝑋 ”〉 ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 1 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) ) |
23 |
20 22
|
mpbird |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) → 𝑤 = 〈“ 𝑋 ”〉 ) |
24 |
|
sneq |
⊢ ( ( 𝑤 ‘ 0 ) = 𝑋 → { ( 𝑤 ‘ 0 ) } = { 𝑋 } ) |
25 |
3
|
eqcomi |
⊢ ( Edg ‘ 𝐺 ) = 𝐸 |
26 |
25
|
a1i |
⊢ ( ( 𝑤 ‘ 0 ) = 𝑋 → ( Edg ‘ 𝐺 ) = 𝐸 ) |
27 |
24 26
|
eleq12d |
⊢ ( ( 𝑤 ‘ 0 ) = 𝑋 → ( { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑋 } ∈ 𝐸 ) ) |
28 |
27
|
biimpd |
⊢ ( ( 𝑤 ‘ 0 ) = 𝑋 → ( { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → { 𝑋 } ∈ 𝐸 ) ) |
29 |
28
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑤 ‘ 0 ) = 𝑋 → ( { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → { 𝑋 } ∈ 𝐸 ) ) ) |
30 |
29
|
com13 |
⊢ ( { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ( ( 𝑤 ‘ 0 ) = 𝑋 → ( 𝑋 ∈ 𝑉 → { 𝑋 } ∈ 𝐸 ) ) ) |
31 |
30
|
3ad2ant3 |
⊢ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( 𝑤 ‘ 0 ) = 𝑋 → ( 𝑋 ∈ 𝑉 → { 𝑋 } ∈ 𝐸 ) ) ) |
32 |
31
|
imp |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( 𝑋 ∈ 𝑉 → { 𝑋 } ∈ 𝐸 ) ) |
33 |
32
|
impcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) → { 𝑋 } ∈ 𝐸 ) |
34 |
15 23 33
|
jca32 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) → ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) |
35 |
|
fveq2 |
⊢ ( 𝑤 = 〈“ 𝑋 ”〉 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 〈“ 𝑋 ”〉 ) ) |
36 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝑋 ”〉 ) = 1 |
37 |
35 36
|
eqtrdi |
⊢ ( 𝑤 = 〈“ 𝑋 ”〉 → ( ♯ ‘ 𝑤 ) = 1 ) |
38 |
37
|
ad2antrl |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) → ( ♯ ‘ 𝑤 ) = 1 ) |
39 |
38
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) → ( ♯ ‘ 𝑤 ) = 1 ) |
40 |
1
|
wrdeqi |
⊢ Word 𝑉 = Word ( Vtx ‘ 𝐺 ) |
41 |
40
|
eleq2i |
⊢ ( 𝑤 ∈ Word 𝑉 ↔ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) |
42 |
41
|
biimpi |
⊢ ( 𝑤 ∈ Word 𝑉 → 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) |
43 |
42
|
ad2antrl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) → 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) |
44 |
|
fveq1 |
⊢ ( 𝑤 = 〈“ 𝑋 ”〉 → ( 𝑤 ‘ 0 ) = ( 〈“ 𝑋 ”〉 ‘ 0 ) ) |
45 |
|
s1fv |
⊢ ( 𝑋 ∈ 𝑉 → ( 〈“ 𝑋 ”〉 ‘ 0 ) = 𝑋 ) |
46 |
44 45
|
sylan9eq |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑤 ‘ 0 ) = 𝑋 ) |
47 |
46
|
eqcomd |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 = ( 𝑤 ‘ 0 ) ) |
48 |
47
|
sneqd |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ 𝑋 ∈ 𝑉 ) → { 𝑋 } = { ( 𝑤 ‘ 0 ) } ) |
49 |
3
|
a1i |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ 𝑋 ∈ 𝑉 ) → 𝐸 = ( Edg ‘ 𝐺 ) ) |
50 |
48 49
|
eleq12d |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ 𝑋 ∈ 𝑉 ) → ( { 𝑋 } ∈ 𝐸 ↔ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
51 |
50
|
biimpd |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ 𝑋 ∈ 𝑉 ) → ( { 𝑋 } ∈ 𝐸 → { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
52 |
51
|
impancom |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) → ( 𝑋 ∈ 𝑉 → { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
53 |
52
|
adantl |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) → ( 𝑋 ∈ 𝑉 → { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
54 |
53
|
impcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) → { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
55 |
39 43 54
|
3jca |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) → ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
56 |
46
|
ex |
⊢ ( 𝑤 = 〈“ 𝑋 ”〉 → ( 𝑋 ∈ 𝑉 → ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
57 |
56
|
ad2antrl |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) → ( 𝑋 ∈ 𝑉 → ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
58 |
57
|
impcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) → ( 𝑤 ‘ 0 ) = 𝑋 ) |
59 |
55 58
|
jca |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) → ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
60 |
34 59
|
impbida |
⊢ ( 𝑋 ∈ 𝑉 → ( ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) ) |
61 |
9 60
|
syl5bb |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑤 ∈ ( 1 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) ) |
62 |
61
|
rabbidva2 |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑤 ∈ ( 1 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) } ) |
63 |
5 7 62
|
3eqtrd |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 𝐶 1 ) = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) } ) |