| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlknon1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
| 2 |
|
clwwlknon1.c |
⊢ 𝐶 = ( ClWWalksNOn ‘ 𝐺 ) |
| 3 |
|
clwwlknon1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
| 4 |
2
|
oveqi |
⊢ ( 𝑋 𝐶 1 ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) |
| 5 |
4
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 𝐶 1 ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) |
| 6 |
|
clwwlknon |
⊢ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = { 𝑤 ∈ ( 1 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } |
| 7 |
6
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = { 𝑤 ∈ ( 1 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } ) |
| 8 |
|
clwwlkn1 |
⊢ ( 𝑤 ∈ ( 1 ClWWalksN 𝐺 ) ↔ ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 9 |
8
|
anbi1i |
⊢ ( ( 𝑤 ∈ ( 1 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
| 10 |
1
|
eqcomi |
⊢ ( Vtx ‘ 𝐺 ) = 𝑉 |
| 11 |
10
|
wrdeqi |
⊢ Word ( Vtx ‘ 𝐺 ) = Word 𝑉 |
| 12 |
11
|
eleq2i |
⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ↔ 𝑤 ∈ Word 𝑉 ) |
| 13 |
12
|
biimpi |
⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) → 𝑤 ∈ Word 𝑉 ) |
| 14 |
13
|
3ad2ant2 |
⊢ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → 𝑤 ∈ Word 𝑉 ) |
| 15 |
14
|
ad2antrl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) → 𝑤 ∈ Word 𝑉 ) |
| 16 |
14
|
adantr |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → 𝑤 ∈ Word 𝑉 ) |
| 17 |
|
simpl1 |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( ♯ ‘ 𝑤 ) = 1 ) |
| 18 |
|
simpr |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( 𝑤 ‘ 0 ) = 𝑋 ) |
| 19 |
16 17 18
|
3jca |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 1 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
| 20 |
19
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) → ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 1 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
| 21 |
|
wrdl1s1 |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑤 = 〈“ 𝑋 ”〉 ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 1 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) → ( 𝑤 = 〈“ 𝑋 ”〉 ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑤 ) = 1 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) ) |
| 23 |
20 22
|
mpbird |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) → 𝑤 = 〈“ 𝑋 ”〉 ) |
| 24 |
|
sneq |
⊢ ( ( 𝑤 ‘ 0 ) = 𝑋 → { ( 𝑤 ‘ 0 ) } = { 𝑋 } ) |
| 25 |
3
|
eqcomi |
⊢ ( Edg ‘ 𝐺 ) = 𝐸 |
| 26 |
25
|
a1i |
⊢ ( ( 𝑤 ‘ 0 ) = 𝑋 → ( Edg ‘ 𝐺 ) = 𝐸 ) |
| 27 |
24 26
|
eleq12d |
⊢ ( ( 𝑤 ‘ 0 ) = 𝑋 → ( { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑋 } ∈ 𝐸 ) ) |
| 28 |
27
|
biimpd |
⊢ ( ( 𝑤 ‘ 0 ) = 𝑋 → ( { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → { 𝑋 } ∈ 𝐸 ) ) |
| 29 |
28
|
a1i |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑤 ‘ 0 ) = 𝑋 → ( { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → { 𝑋 } ∈ 𝐸 ) ) ) |
| 30 |
29
|
com13 |
⊢ ( { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ( ( 𝑤 ‘ 0 ) = 𝑋 → ( 𝑋 ∈ 𝑉 → { 𝑋 } ∈ 𝐸 ) ) ) |
| 31 |
30
|
3ad2ant3 |
⊢ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( 𝑤 ‘ 0 ) = 𝑋 → ( 𝑋 ∈ 𝑉 → { 𝑋 } ∈ 𝐸 ) ) ) |
| 32 |
31
|
imp |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) → ( 𝑋 ∈ 𝑉 → { 𝑋 } ∈ 𝐸 ) ) |
| 33 |
32
|
impcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) → { 𝑋 } ∈ 𝐸 ) |
| 34 |
15 23 33
|
jca32 |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) → ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) |
| 35 |
|
fveq2 |
⊢ ( 𝑤 = 〈“ 𝑋 ”〉 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 〈“ 𝑋 ”〉 ) ) |
| 36 |
|
s1len |
⊢ ( ♯ ‘ 〈“ 𝑋 ”〉 ) = 1 |
| 37 |
35 36
|
eqtrdi |
⊢ ( 𝑤 = 〈“ 𝑋 ”〉 → ( ♯ ‘ 𝑤 ) = 1 ) |
| 38 |
37
|
ad2antrl |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) → ( ♯ ‘ 𝑤 ) = 1 ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) → ( ♯ ‘ 𝑤 ) = 1 ) |
| 40 |
1
|
wrdeqi |
⊢ Word 𝑉 = Word ( Vtx ‘ 𝐺 ) |
| 41 |
40
|
eleq2i |
⊢ ( 𝑤 ∈ Word 𝑉 ↔ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 42 |
41
|
biimpi |
⊢ ( 𝑤 ∈ Word 𝑉 → 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 43 |
42
|
ad2antrl |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) → 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 44 |
|
fveq1 |
⊢ ( 𝑤 = 〈“ 𝑋 ”〉 → ( 𝑤 ‘ 0 ) = ( 〈“ 𝑋 ”〉 ‘ 0 ) ) |
| 45 |
|
s1fv |
⊢ ( 𝑋 ∈ 𝑉 → ( 〈“ 𝑋 ”〉 ‘ 0 ) = 𝑋 ) |
| 46 |
44 45
|
sylan9eq |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ 𝑋 ∈ 𝑉 ) → ( 𝑤 ‘ 0 ) = 𝑋 ) |
| 47 |
46
|
eqcomd |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ 𝑋 ∈ 𝑉 ) → 𝑋 = ( 𝑤 ‘ 0 ) ) |
| 48 |
47
|
sneqd |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ 𝑋 ∈ 𝑉 ) → { 𝑋 } = { ( 𝑤 ‘ 0 ) } ) |
| 49 |
3
|
a1i |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ 𝑋 ∈ 𝑉 ) → 𝐸 = ( Edg ‘ 𝐺 ) ) |
| 50 |
48 49
|
eleq12d |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ 𝑋 ∈ 𝑉 ) → ( { 𝑋 } ∈ 𝐸 ↔ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 51 |
50
|
biimpd |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ 𝑋 ∈ 𝑉 ) → ( { 𝑋 } ∈ 𝐸 → { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 52 |
51
|
impancom |
⊢ ( ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) → ( 𝑋 ∈ 𝑉 → { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) → ( 𝑋 ∈ 𝑉 → { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 54 |
53
|
impcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) → { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 55 |
39 43 54
|
3jca |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) → ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 56 |
46
|
ex |
⊢ ( 𝑤 = 〈“ 𝑋 ”〉 → ( 𝑋 ∈ 𝑉 → ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
| 57 |
56
|
ad2antrl |
⊢ ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) → ( 𝑋 ∈ 𝑉 → ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
| 58 |
57
|
impcom |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) → ( 𝑤 ‘ 0 ) = 𝑋 ) |
| 59 |
55 58
|
jca |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) → ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
| 60 |
34 59
|
impbida |
⊢ ( 𝑋 ∈ 𝑉 → ( ( ( ( ♯ ‘ 𝑤 ) = 1 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) ) |
| 61 |
9 60
|
bitrid |
⊢ ( 𝑋 ∈ 𝑉 → ( ( 𝑤 ∈ ( 1 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) ) ) |
| 62 |
61
|
rabbidva2 |
⊢ ( 𝑋 ∈ 𝑉 → { 𝑤 ∈ ( 1 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) } ) |
| 63 |
5 7 62
|
3eqtrd |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 𝐶 1 ) = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) } ) |