Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
2 |
|
eqid |
⊢ ( ClWWalksNOn ‘ 𝐺 ) = ( ClWWalksNOn ‘ 𝐺 ) |
3 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
4 |
1 2 3
|
clwwlknon1loop |
⊢ ( ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝑋 } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = { 〈“ 𝑋 ”〉 } ) |
5 |
|
fveq2 |
⊢ ( ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = { 〈“ 𝑋 ”〉 } → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) = ( ♯ ‘ { 〈“ 𝑋 ”〉 } ) ) |
6 |
|
s1cli |
⊢ 〈“ 𝑋 ”〉 ∈ Word V |
7 |
|
hashsng |
⊢ ( 〈“ 𝑋 ”〉 ∈ Word V → ( ♯ ‘ { 〈“ 𝑋 ”〉 } ) = 1 ) |
8 |
6 7
|
ax-mp |
⊢ ( ♯ ‘ { 〈“ 𝑋 ”〉 } ) = 1 |
9 |
5 8
|
eqtrdi |
⊢ ( ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = { 〈“ 𝑋 ”〉 } → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) = 1 ) |
10 |
|
1le1 |
⊢ 1 ≤ 1 |
11 |
9 10
|
eqbrtrdi |
⊢ ( ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = { 〈“ 𝑋 ”〉 } → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) ≤ 1 ) |
12 |
4 11
|
syl |
⊢ ( ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝑋 } ∈ ( Edg ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) ≤ 1 ) |
13 |
1 2 3
|
clwwlknon1nloop |
⊢ ( { 𝑋 } ∉ ( Edg ‘ 𝐺 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = ∅ ) |
14 |
13
|
adantl |
⊢ ( ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝑋 } ∉ ( Edg ‘ 𝐺 ) ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = ∅ ) |
15 |
|
fveq2 |
⊢ ( ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = ∅ → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) = ( ♯ ‘ ∅ ) ) |
16 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
17 |
15 16
|
eqtrdi |
⊢ ( ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = ∅ → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) = 0 ) |
18 |
|
0le1 |
⊢ 0 ≤ 1 |
19 |
17 18
|
eqbrtrdi |
⊢ ( ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = ∅ → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) ≤ 1 ) |
20 |
14 19
|
syl |
⊢ ( ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ { 𝑋 } ∉ ( Edg ‘ 𝐺 ) ) → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) ≤ 1 ) |
21 |
12 20
|
pm2.61danel |
⊢ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) ≤ 1 ) |
22 |
|
id |
⊢ ( ¬ 𝑋 ∈ ( Vtx ‘ 𝐺 ) → ¬ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
23 |
22
|
intnanrd |
⊢ ( ¬ 𝑋 ∈ ( Vtx ‘ 𝐺 ) → ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 1 ∈ ℕ ) ) |
24 |
|
clwwlknon0 |
⊢ ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 1 ∈ ℕ ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = ∅ ) |
25 |
23 24
|
syl |
⊢ ( ¬ 𝑋 ∈ ( Vtx ‘ 𝐺 ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = ∅ ) |
26 |
25
|
fveq2d |
⊢ ( ¬ 𝑋 ∈ ( Vtx ‘ 𝐺 ) → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) = ( ♯ ‘ ∅ ) ) |
27 |
26 16
|
eqtrdi |
⊢ ( ¬ 𝑋 ∈ ( Vtx ‘ 𝐺 ) → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) = 0 ) |
28 |
27 18
|
eqbrtrdi |
⊢ ( ¬ 𝑋 ∈ ( Vtx ‘ 𝐺 ) → ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) ≤ 1 ) |
29 |
21 28
|
pm2.61i |
⊢ ( ♯ ‘ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) ) ≤ 1 |