Metamath Proof Explorer


Theorem clwwlknon1loop

Description: If there is a loop at vertex X , the set of (closed) walks on X of length 1 as words over the set of vertices is a singleton containing the singleton word consisting of X . (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Feb-2022) (Proof shortened by AV, 25-Mar-2022)

Ref Expression
Hypotheses clwwlknon1.v 𝑉 = ( Vtx ‘ 𝐺 )
clwwlknon1.c 𝐶 = ( ClWWalksNOn ‘ 𝐺 )
clwwlknon1.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion clwwlknon1loop ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) → ( 𝑋 𝐶 1 ) = { ⟨“ 𝑋 ”⟩ } )

Proof

Step Hyp Ref Expression
1 clwwlknon1.v 𝑉 = ( Vtx ‘ 𝐺 )
2 clwwlknon1.c 𝐶 = ( ClWWalksNOn ‘ 𝐺 )
3 clwwlknon1.e 𝐸 = ( Edg ‘ 𝐺 )
4 simprl ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) ) → 𝑤 = ⟨“ 𝑋 ”⟩ )
5 s1cl ( 𝑋𝑉 → ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 )
6 5 adantr ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) → ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 )
7 6 adantr ( ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) ∧ 𝑤 = ⟨“ 𝑋 ”⟩ ) → ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 )
8 eleq1 ( 𝑤 = ⟨“ 𝑋 ”⟩ → ( 𝑤 ∈ Word 𝑉 ↔ ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 ) )
9 8 adantl ( ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) ∧ 𝑤 = ⟨“ 𝑋 ”⟩ ) → ( 𝑤 ∈ Word 𝑉 ↔ ⟨“ 𝑋 ”⟩ ∈ Word 𝑉 ) )
10 7 9 mpbird ( ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) ∧ 𝑤 = ⟨“ 𝑋 ”⟩ ) → 𝑤 ∈ Word 𝑉 )
11 simpr ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) → { 𝑋 } ∈ 𝐸 )
12 11 anim1ci ( ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) ∧ 𝑤 = ⟨“ 𝑋 ”⟩ ) → ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) )
13 10 12 jca ( ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) ∧ 𝑤 = ⟨“ 𝑋 ”⟩ ) → ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) ) )
14 13 ex ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) → ( 𝑤 = ⟨“ 𝑋 ”⟩ → ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) ) ) )
15 4 14 impbid2 ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) → ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) ) ↔ 𝑤 = ⟨“ 𝑋 ”⟩ ) )
16 15 alrimiv ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) → ∀ 𝑤 ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) ) ↔ 𝑤 = ⟨“ 𝑋 ”⟩ ) )
17 1 2 3 clwwlknon1 ( 𝑋𝑉 → ( 𝑋 𝐶 1 ) = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) } )
18 17 eqeq1d ( 𝑋𝑉 → ( ( 𝑋 𝐶 1 ) = { ⟨“ 𝑋 ”⟩ } ↔ { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) } = { ⟨“ 𝑋 ”⟩ } ) )
19 18 adantr ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) → ( ( 𝑋 𝐶 1 ) = { ⟨“ 𝑋 ”⟩ } ↔ { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) } = { ⟨“ 𝑋 ”⟩ } ) )
20 rabeqsn ( { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) } = { ⟨“ 𝑋 ”⟩ } ↔ ∀ 𝑤 ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) ) ↔ 𝑤 = ⟨“ 𝑋 ”⟩ ) )
21 19 20 bitrdi ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) → ( ( 𝑋 𝐶 1 ) = { ⟨“ 𝑋 ”⟩ } ↔ ∀ 𝑤 ( ( 𝑤 ∈ Word 𝑉 ∧ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) ) ↔ 𝑤 = ⟨“ 𝑋 ”⟩ ) ) )
22 16 21 mpbird ( ( 𝑋𝑉 ∧ { 𝑋 } ∈ 𝐸 ) → ( 𝑋 𝐶 1 ) = { ⟨“ 𝑋 ”⟩ } )