Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknon1.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
clwwlknon1.c |
⊢ 𝐶 = ( ClWWalksNOn ‘ 𝐺 ) |
3 |
|
clwwlknon1.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
4 |
1 2 3
|
clwwlknon1 |
⊢ ( 𝑋 ∈ 𝑉 → ( 𝑋 𝐶 1 ) = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) } ) |
5 |
4
|
adantr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ { 𝑋 } ∉ 𝐸 ) → ( 𝑋 𝐶 1 ) = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) } ) |
6 |
|
df-nel |
⊢ ( { 𝑋 } ∉ 𝐸 ↔ ¬ { 𝑋 } ∈ 𝐸 ) |
7 |
6
|
biimpi |
⊢ ( { 𝑋 } ∉ 𝐸 → ¬ { 𝑋 } ∈ 𝐸 ) |
8 |
7
|
olcd |
⊢ ( { 𝑋 } ∉ 𝐸 → ( ¬ 𝑤 = 〈“ 𝑋 ”〉 ∨ ¬ { 𝑋 } ∈ 𝐸 ) ) |
9 |
8
|
ad2antlr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ { 𝑋 } ∉ 𝐸 ) ∧ 𝑤 ∈ Word 𝑉 ) → ( ¬ 𝑤 = 〈“ 𝑋 ”〉 ∨ ¬ { 𝑋 } ∈ 𝐸 ) ) |
10 |
|
ianor |
⊢ ( ¬ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ↔ ( ¬ 𝑤 = 〈“ 𝑋 ”〉 ∨ ¬ { 𝑋 } ∈ 𝐸 ) ) |
11 |
9 10
|
sylibr |
⊢ ( ( ( 𝑋 ∈ 𝑉 ∧ { 𝑋 } ∉ 𝐸 ) ∧ 𝑤 ∈ Word 𝑉 ) → ¬ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) |
12 |
11
|
ralrimiva |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ { 𝑋 } ∉ 𝐸 ) → ∀ 𝑤 ∈ Word 𝑉 ¬ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) |
13 |
|
rabeq0 |
⊢ ( { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) } = ∅ ↔ ∀ 𝑤 ∈ Word 𝑉 ¬ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) ) |
14 |
12 13
|
sylibr |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ { 𝑋 } ∉ 𝐸 ) → { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = 〈“ 𝑋 ”〉 ∧ { 𝑋 } ∈ 𝐸 ) } = ∅ ) |
15 |
5 14
|
eqtrd |
⊢ ( ( 𝑋 ∈ 𝑉 ∧ { 𝑋 } ∉ 𝐸 ) → ( 𝑋 𝐶 1 ) = ∅ ) |
16 |
2
|
oveqi |
⊢ ( 𝑋 𝐶 1 ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) |
17 |
1
|
eleq2i |
⊢ ( 𝑋 ∈ 𝑉 ↔ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
18 |
17
|
notbii |
⊢ ( ¬ 𝑋 ∈ 𝑉 ↔ ¬ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
19 |
18
|
biimpi |
⊢ ( ¬ 𝑋 ∈ 𝑉 → ¬ 𝑋 ∈ ( Vtx ‘ 𝐺 ) ) |
20 |
19
|
intnanrd |
⊢ ( ¬ 𝑋 ∈ 𝑉 → ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 1 ∈ ℕ ) ) |
21 |
|
clwwlknon0 |
⊢ ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 1 ∈ ℕ ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = ∅ ) |
22 |
20 21
|
syl |
⊢ ( ¬ 𝑋 ∈ 𝑉 → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = ∅ ) |
23 |
16 22
|
syl5eq |
⊢ ( ¬ 𝑋 ∈ 𝑉 → ( 𝑋 𝐶 1 ) = ∅ ) |
24 |
23
|
adantr |
⊢ ( ( ¬ 𝑋 ∈ 𝑉 ∧ { 𝑋 } ∉ 𝐸 ) → ( 𝑋 𝐶 1 ) = ∅ ) |
25 |
15 24
|
pm2.61ian |
⊢ ( { 𝑋 } ∉ 𝐸 → ( 𝑋 𝐶 1 ) = ∅ ) |