Metamath Proof Explorer


Theorem clwwlknon1nloop

Description: If there is no loop at vertex X , the set of (closed) walks on X of length 1 as words over the set of vertices is empty. (Contributed by AV, 11-Feb-2022) (Revised by AV, 25-Mar-2022)

Ref Expression
Hypotheses clwwlknon1.v 𝑉 = ( Vtx ‘ 𝐺 )
clwwlknon1.c 𝐶 = ( ClWWalksNOn ‘ 𝐺 )
clwwlknon1.e 𝐸 = ( Edg ‘ 𝐺 )
Assertion clwwlknon1nloop ( { 𝑋 } ∉ 𝐸 → ( 𝑋 𝐶 1 ) = ∅ )

Proof

Step Hyp Ref Expression
1 clwwlknon1.v 𝑉 = ( Vtx ‘ 𝐺 )
2 clwwlknon1.c 𝐶 = ( ClWWalksNOn ‘ 𝐺 )
3 clwwlknon1.e 𝐸 = ( Edg ‘ 𝐺 )
4 1 2 3 clwwlknon1 ( 𝑋𝑉 → ( 𝑋 𝐶 1 ) = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) } )
5 4 adantr ( ( 𝑋𝑉 ∧ { 𝑋 } ∉ 𝐸 ) → ( 𝑋 𝐶 1 ) = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) } )
6 df-nel ( { 𝑋 } ∉ 𝐸 ↔ ¬ { 𝑋 } ∈ 𝐸 )
7 6 biimpi ( { 𝑋 } ∉ 𝐸 → ¬ { 𝑋 } ∈ 𝐸 )
8 7 olcd ( { 𝑋 } ∉ 𝐸 → ( ¬ 𝑤 = ⟨“ 𝑋 ”⟩ ∨ ¬ { 𝑋 } ∈ 𝐸 ) )
9 8 ad2antlr ( ( ( 𝑋𝑉 ∧ { 𝑋 } ∉ 𝐸 ) ∧ 𝑤 ∈ Word 𝑉 ) → ( ¬ 𝑤 = ⟨“ 𝑋 ”⟩ ∨ ¬ { 𝑋 } ∈ 𝐸 ) )
10 ianor ( ¬ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) ↔ ( ¬ 𝑤 = ⟨“ 𝑋 ”⟩ ∨ ¬ { 𝑋 } ∈ 𝐸 ) )
11 9 10 sylibr ( ( ( 𝑋𝑉 ∧ { 𝑋 } ∉ 𝐸 ) ∧ 𝑤 ∈ Word 𝑉 ) → ¬ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) )
12 11 ralrimiva ( ( 𝑋𝑉 ∧ { 𝑋 } ∉ 𝐸 ) → ∀ 𝑤 ∈ Word 𝑉 ¬ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) )
13 rabeq0 ( { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) } = ∅ ↔ ∀ 𝑤 ∈ Word 𝑉 ¬ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) )
14 12 13 sylibr ( ( 𝑋𝑉 ∧ { 𝑋 } ∉ 𝐸 ) → { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 = ⟨“ 𝑋 ”⟩ ∧ { 𝑋 } ∈ 𝐸 ) } = ∅ )
15 5 14 eqtrd ( ( 𝑋𝑉 ∧ { 𝑋 } ∉ 𝐸 ) → ( 𝑋 𝐶 1 ) = ∅ )
16 2 oveqi ( 𝑋 𝐶 1 ) = ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 )
17 1 eleq2i ( 𝑋𝑉𝑋 ∈ ( Vtx ‘ 𝐺 ) )
18 17 notbii ( ¬ 𝑋𝑉 ↔ ¬ 𝑋 ∈ ( Vtx ‘ 𝐺 ) )
19 18 biimpi ( ¬ 𝑋𝑉 → ¬ 𝑋 ∈ ( Vtx ‘ 𝐺 ) )
20 19 intnanrd ( ¬ 𝑋𝑉 → ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 1 ∈ ℕ ) )
21 clwwlknon0 ( ¬ ( 𝑋 ∈ ( Vtx ‘ 𝐺 ) ∧ 1 ∈ ℕ ) → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = ∅ )
22 20 21 syl ( ¬ 𝑋𝑉 → ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 1 ) = ∅ )
23 16 22 eqtrid ( ¬ 𝑋𝑉 → ( 𝑋 𝐶 1 ) = ∅ )
24 23 adantr ( ( ¬ 𝑋𝑉 ∧ { 𝑋 } ∉ 𝐸 ) → ( 𝑋 𝐶 1 ) = ∅ )
25 15 24 pm2.61ian ( { 𝑋 } ∉ 𝐸 → ( 𝑋 𝐶 1 ) = ∅ )