Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknon2.c |
⊢ 𝐶 = ( ClWWalksNOn ‘ 𝐺 ) |
2 |
|
clwwlknon2x.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
3 |
|
clwwlknon2x.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
4 |
1
|
clwwlknon2 |
⊢ ( 𝑋 𝐶 2 ) = { 𝑤 ∈ ( 2 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } |
5 |
|
clwwlkn2 |
⊢ ( 𝑤 ∈ ( 2 ClWWalksN 𝐺 ) ↔ ( ( ♯ ‘ 𝑤 ) = 2 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
6 |
5
|
anbi1i |
⊢ ( ( 𝑤 ∈ ( 2 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
7 |
|
3anan12 |
⊢ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
8 |
7
|
anbi1i |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
9 |
|
anass |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) ) |
10 |
2
|
eqcomi |
⊢ ( Vtx ‘ 𝐺 ) = 𝑉 |
11 |
10
|
wrdeqi |
⊢ Word ( Vtx ‘ 𝐺 ) = Word 𝑉 |
12 |
11
|
eleq2i |
⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ↔ 𝑤 ∈ Word 𝑉 ) |
13 |
|
df-3an |
⊢ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝐸 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝐸 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
14 |
3
|
eleq2i |
⊢ ( { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝐸 ↔ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) |
15 |
14
|
anbi2i |
⊢ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝐸 ) ↔ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
16 |
15
|
anbi1i |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝐸 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
17 |
13 16
|
bitr2i |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝐸 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) |
18 |
12 17
|
anbi12i |
⊢ ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝐸 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) ) |
19 |
9 18
|
bitri |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝐸 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) ) |
20 |
8 19
|
bitri |
⊢ ( ( ( ( ♯ ‘ 𝑤 ) = 2 ∧ 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝐸 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) ) |
21 |
6 20
|
bitri |
⊢ ( ( 𝑤 ∈ ( 2 ClWWalksN 𝐺 ) ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ↔ ( 𝑤 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝐸 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) ) ) |
22 |
21
|
rabbia2 |
⊢ { 𝑤 ∈ ( 2 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑋 } = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝐸 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } |
23 |
4 22
|
eqtri |
⊢ ( 𝑋 𝐶 2 ) = { 𝑤 ∈ Word 𝑉 ∣ ( ( ♯ ‘ 𝑤 ) = 2 ∧ { ( 𝑤 ‘ 0 ) , ( 𝑤 ‘ 1 ) } ∈ 𝐸 ∧ ( 𝑤 ‘ 0 ) = 𝑋 ) } |