Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) → 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) → 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ) |
3 |
|
simpl |
⊢ ( ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) → 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
4 |
3
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) → 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
5 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) → ( 𝐴 ‘ 0 ) = 𝑋 ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) → ( 𝐴 ‘ 0 ) = 𝑋 ) |
7 |
|
simpr |
⊢ ( ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) → ( 𝐵 ‘ 0 ) = 𝑋 ) |
8 |
7
|
eqcomd |
⊢ ( ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) → 𝑋 = ( 𝐵 ‘ 0 ) ) |
9 |
8
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) → 𝑋 = ( 𝐵 ‘ 0 ) ) |
10 |
6 9
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) → ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) |
11 |
|
clwwlknccat |
⊢ ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = ( 𝐵 ‘ 0 ) ) → ( 𝐴 ++ 𝐵 ) ∈ ( ( 𝑀 + 𝑁 ) ClWWalksN 𝐺 ) ) |
12 |
2 4 10 11
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) → ( 𝐴 ++ 𝐵 ) ∈ ( ( 𝑀 + 𝑁 ) ClWWalksN 𝐺 ) ) |
13 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
14 |
13
|
clwwlknwrd |
⊢ ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) → 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ) |
15 |
14
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) → 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ) |
16 |
15
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) → 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ) |
17 |
13
|
clwwlknwrd |
⊢ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) → 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) |
19 |
18
|
adantl |
⊢ ( ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) → 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ) |
20 |
|
clwwlknnn |
⊢ ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) → 𝑀 ∈ ℕ ) |
21 |
|
clwwlknlen |
⊢ ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) → ( ♯ ‘ 𝐴 ) = 𝑀 ) |
22 |
|
nngt0 |
⊢ ( 𝑀 ∈ ℕ → 0 < 𝑀 ) |
23 |
|
breq2 |
⊢ ( ( ♯ ‘ 𝐴 ) = 𝑀 → ( 0 < ( ♯ ‘ 𝐴 ) ↔ 0 < 𝑀 ) ) |
24 |
22 23
|
syl5ibrcom |
⊢ ( 𝑀 ∈ ℕ → ( ( ♯ ‘ 𝐴 ) = 𝑀 → 0 < ( ♯ ‘ 𝐴 ) ) ) |
25 |
20 21 24
|
sylc |
⊢ ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) → 0 < ( ♯ ‘ 𝐴 ) ) |
26 |
25
|
adantr |
⊢ ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) → 0 < ( ♯ ‘ 𝐴 ) ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) → 0 < ( ♯ ‘ 𝐴 ) ) |
28 |
|
ccatfv0 |
⊢ ( ( 𝐴 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝐵 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 0 < ( ♯ ‘ 𝐴 ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
29 |
16 19 27 28
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = ( 𝐴 ‘ 0 ) ) |
30 |
29 6
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = 𝑋 ) |
31 |
12 30
|
jca |
⊢ ( ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) → ( ( 𝐴 ++ 𝐵 ) ∈ ( ( 𝑀 + 𝑁 ) ClWWalksN 𝐺 ) ∧ ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = 𝑋 ) ) |
32 |
|
isclwwlknon |
⊢ ( 𝐴 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑀 ) ↔ ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ) |
33 |
|
isclwwlknon |
⊢ ( 𝐵 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ↔ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) |
34 |
32 33
|
anbi12i |
⊢ ( ( 𝐴 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑀 ) ∧ 𝐵 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ↔ ( ( 𝐴 ∈ ( 𝑀 ClWWalksN 𝐺 ) ∧ ( 𝐴 ‘ 0 ) = 𝑋 ) ∧ ( 𝐵 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝐵 ‘ 0 ) = 𝑋 ) ) ) |
35 |
|
isclwwlknon |
⊢ ( ( 𝐴 ++ 𝐵 ) ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑀 + 𝑁 ) ) ↔ ( ( 𝐴 ++ 𝐵 ) ∈ ( ( 𝑀 + 𝑁 ) ClWWalksN 𝐺 ) ∧ ( ( 𝐴 ++ 𝐵 ) ‘ 0 ) = 𝑋 ) ) |
36 |
31 34 35
|
3imtr4i |
⊢ ( ( 𝐴 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑀 ) ∧ 𝐵 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) → ( 𝐴 ++ 𝐵 ) ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) ( 𝑀 + 𝑁 ) ) ) |