Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknonel.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
clwwlknonel.e |
⊢ 𝐸 = ( Edg ‘ 𝐺 ) |
3 |
1 2
|
isclwwlk |
⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) |
4 |
|
simpl |
⊢ ( ( ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑊 = ∅ ) → ( ♯ ‘ 𝑊 ) = 𝑁 ) |
5 |
|
fveq2 |
⊢ ( 𝑊 = ∅ → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ∅ ) ) |
6 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
7 |
5 6
|
eqtrdi |
⊢ ( 𝑊 = ∅ → ( ♯ ‘ 𝑊 ) = 0 ) |
8 |
7
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑊 = ∅ ) → ( ♯ ‘ 𝑊 ) = 0 ) |
9 |
4 8
|
eqtr3d |
⊢ ( ( ( ♯ ‘ 𝑊 ) = 𝑁 ∧ 𝑊 = ∅ ) → 𝑁 = 0 ) |
10 |
9
|
ex |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑊 = ∅ → 𝑁 = 0 ) ) |
11 |
10
|
necon3d |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑁 ≠ 0 → 𝑊 ≠ ∅ ) ) |
12 |
11
|
impcom |
⊢ ( ( 𝑁 ≠ 0 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → 𝑊 ≠ ∅ ) |
13 |
12
|
biantrud |
⊢ ( ( 𝑁 ≠ 0 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑊 ∈ Word 𝑉 ↔ ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ) ) |
14 |
13
|
bicomd |
⊢ ( ( 𝑁 ≠ 0 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ↔ 𝑊 ∈ Word 𝑉 ) ) |
15 |
14
|
3anbi1d |
⊢ ( ( 𝑁 ≠ 0 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) |
16 |
3 15
|
syl5bb |
⊢ ( ( 𝑁 ≠ 0 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) |
17 |
16
|
a1d |
⊢ ( ( 𝑁 ≠ 0 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ( 𝑊 ‘ 0 ) = 𝑋 → ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) |
18 |
17
|
expimpd |
⊢ ( 𝑁 ≠ 0 → ( ( ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) → ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) |
19 |
18
|
pm5.32rd |
⊢ ( 𝑁 ≠ 0 → ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ) ) ) |
20 |
|
isclwwlknon |
⊢ ( 𝑊 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ↔ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ) |
21 |
|
isclwwlkn |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
22 |
21
|
anbi1i |
⊢ ( ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ↔ ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ) |
23 |
|
anass |
⊢ ( ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ) ) |
24 |
20 22 23
|
3bitri |
⊢ ( 𝑊 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ) ) |
25 |
|
3anass |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ) ) |
26 |
19 24 25
|
3bitr4g |
⊢ ( 𝑁 ≠ 0 → ( 𝑊 ∈ ( 𝑋 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ( 𝑊 ‘ 0 ) = 𝑋 ) ) ) |