| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( Vtx ‘ 𝑔 ) = ( Vtx ‘ 𝐺 ) ) |
| 2 |
|
eqidd |
⊢ ( 𝑔 = 𝐺 → ℕ0 = ℕ0 ) |
| 3 |
|
oveq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝑛 ClWWalksN 𝑔 ) = ( 𝑛 ClWWalksN 𝐺 ) ) |
| 4 |
3
|
rabeqdv |
⊢ ( 𝑔 = 𝐺 → { 𝑤 ∈ ( 𝑛 ClWWalksN 𝑔 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } = { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) |
| 5 |
1 2 4
|
mpoeq123dv |
⊢ ( 𝑔 = 𝐺 → ( 𝑣 ∈ ( Vtx ‘ 𝑔 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝑔 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) |
| 6 |
|
df-clwwlknon |
⊢ ClWWalksNOn = ( 𝑔 ∈ V ↦ ( 𝑣 ∈ ( Vtx ‘ 𝑔 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝑔 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) |
| 7 |
|
fvex |
⊢ ( Vtx ‘ 𝐺 ) ∈ V |
| 8 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 9 |
7 8
|
mpoex |
⊢ ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ∈ V |
| 10 |
5 6 9
|
fvmpt |
⊢ ( 𝐺 ∈ V → ( ClWWalksNOn ‘ 𝐺 ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) |
| 11 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( ClWWalksNOn ‘ 𝐺 ) = ∅ ) |
| 12 |
|
fvprc |
⊢ ( ¬ 𝐺 ∈ V → ( Vtx ‘ 𝐺 ) = ∅ ) |
| 13 |
12
|
orcd |
⊢ ( ¬ 𝐺 ∈ V → ( ( Vtx ‘ 𝐺 ) = ∅ ∨ ℕ0 = ∅ ) ) |
| 14 |
|
0mpo0 |
⊢ ( ( ( Vtx ‘ 𝐺 ) = ∅ ∨ ℕ0 = ∅ ) → ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) = ∅ ) |
| 15 |
13 14
|
syl |
⊢ ( ¬ 𝐺 ∈ V → ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) = ∅ ) |
| 16 |
11 15
|
eqtr4d |
⊢ ( ¬ 𝐺 ∈ V → ( ClWWalksNOn ‘ 𝐺 ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) ) |
| 17 |
10 16
|
pm2.61i |
⊢ ( ClWWalksNOn ‘ 𝐺 ) = ( 𝑣 ∈ ( Vtx ‘ 𝐺 ) , 𝑛 ∈ ℕ0 ↦ { 𝑤 ∈ ( 𝑛 ClWWalksN 𝐺 ) ∣ ( 𝑤 ‘ 0 ) = 𝑣 } ) |