Step |
Hyp |
Ref |
Expression |
1 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 = ( 𝑊 cyclShift 𝑛 ) ↔ 𝑥 = ( 𝑊 cyclShift 𝑛 ) ) ) |
2 |
1
|
rexbidv |
⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑊 cyclShift 𝑛 ) ↔ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑊 cyclShift 𝑛 ) ) ) |
3 |
2
|
cbvrabv |
⊢ { 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑊 cyclShift 𝑛 ) } = { 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑊 cyclShift 𝑛 ) } |
4 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
5 |
4
|
clwwlknwrd |
⊢ ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) |
6 |
5
|
ad2antrl |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ∧ ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) → 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ) |
7 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ∧ ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) → ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) |
8 |
6 7
|
jca |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ∧ ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) → ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) |
9 |
|
simprr |
⊢ ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) → 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
10 |
|
simpllr |
⊢ ( ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) ∧ 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) → 𝑛 ∈ ( 0 ... 𝑁 ) ) |
11 |
|
clwwnisshclwwsn |
⊢ ( ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 cyclShift 𝑛 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
12 |
9 10 11
|
syl2an2r |
⊢ ( ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) ∧ 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) → ( 𝑊 cyclShift 𝑛 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
13 |
|
eleq1 |
⊢ ( 𝑤 = ( 𝑊 cyclShift 𝑛 ) → ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑊 cyclShift 𝑛 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) |
14 |
13
|
adantl |
⊢ ( ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) ∧ 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) → ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑊 cyclShift 𝑛 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) |
15 |
12 14
|
mpbird |
⊢ ( ( ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) ∧ ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) ∧ 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) → 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
16 |
15
|
exp31 |
⊢ ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( 𝑤 = ( 𝑊 cyclShift 𝑛 ) → 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) ) |
17 |
16
|
com23 |
⊢ ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑛 ∈ ( 0 ... 𝑁 ) ) → ( 𝑤 = ( 𝑊 cyclShift 𝑛 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) ) |
18 |
17
|
rexlimdva |
⊢ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) → ( ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) ) |
19 |
18
|
imp |
⊢ ( ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) → ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) |
20 |
19
|
impcom |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ∧ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) → 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
21 |
|
simprr |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ∧ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) → ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) |
22 |
20 21
|
jca |
⊢ ( ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ∧ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) → ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) |
23 |
8 22
|
impbida |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ↔ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) ) |
24 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 = ( 𝑊 cyclShift 𝑛 ) ↔ 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) |
25 |
24
|
rexbidv |
⊢ ( 𝑥 = 𝑤 → ( ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑊 cyclShift 𝑛 ) ↔ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) |
26 |
25
|
elrab |
⊢ ( 𝑤 ∈ { 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑊 cyclShift 𝑛 ) } ↔ ( 𝑤 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) |
27 |
|
eqeq1 |
⊢ ( 𝑦 = 𝑤 → ( 𝑦 = ( 𝑊 cyclShift 𝑛 ) ↔ 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) |
28 |
27
|
rexbidv |
⊢ ( 𝑦 = 𝑤 → ( ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑊 cyclShift 𝑛 ) ↔ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) |
29 |
28
|
elrab |
⊢ ( 𝑤 ∈ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑊 cyclShift 𝑛 ) } ↔ ( 𝑤 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑤 = ( 𝑊 cyclShift 𝑛 ) ) ) |
30 |
23 26 29
|
3bitr4g |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( 𝑤 ∈ { 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑊 cyclShift 𝑛 ) } ↔ 𝑤 ∈ { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑊 cyclShift 𝑛 ) } ) ) |
31 |
30
|
eqrdv |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → { 𝑥 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑥 = ( 𝑊 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑊 cyclShift 𝑛 ) } ) |
32 |
3 31
|
syl5eq |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → { 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑊 cyclShift 𝑛 ) } = { 𝑦 ∈ Word ( Vtx ‘ 𝐺 ) ∣ ∃ 𝑛 ∈ ( 0 ... 𝑁 ) 𝑦 = ( 𝑊 cyclShift 𝑛 ) } ) |