Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlknun.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
eliun |
⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ↔ ∃ 𝑥 ∈ 𝑉 𝑦 ∈ ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) |
3 |
|
isclwwlknon |
⊢ ( 𝑦 ∈ ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ↔ ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑥 ) ) |
4 |
3
|
rexbii |
⊢ ( ∃ 𝑥 ∈ 𝑉 𝑦 ∈ ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ↔ ∃ 𝑥 ∈ 𝑉 ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑥 ) ) |
5 |
|
simpl |
⊢ ( ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑥 ) → 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
6 |
5
|
rexlimivw |
⊢ ( ∃ 𝑥 ∈ 𝑉 ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑥 ) → 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
7 |
|
eqid |
⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) |
8 |
1 7
|
clwwlknp |
⊢ ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
9 |
8
|
anim2i |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ( 𝐺 ∈ USGraph ∧ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
10 |
7 1
|
usgrpredgv |
⊢ ( ( 𝐺 ∈ USGraph ∧ { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( lastS ‘ 𝑦 ) ∈ 𝑉 ∧ ( 𝑦 ‘ 0 ) ∈ 𝑉 ) ) |
11 |
10
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ( ( lastS ‘ 𝑦 ) ∈ 𝑉 ∧ ( 𝑦 ‘ 0 ) ∈ 𝑉 ) ) ) |
12 |
|
simpr |
⊢ ( ( ( lastS ‘ 𝑦 ) ∈ 𝑉 ∧ ( 𝑦 ‘ 0 ) ∈ 𝑉 ) → ( 𝑦 ‘ 0 ) ∈ 𝑉 ) |
13 |
11 12
|
syl6com |
⊢ ( { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) → ( 𝐺 ∈ USGraph → ( 𝑦 ‘ 0 ) ∈ 𝑉 ) ) |
14 |
13
|
3ad2ant3 |
⊢ ( ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) → ( 𝐺 ∈ USGraph → ( 𝑦 ‘ 0 ) ∈ 𝑉 ) ) |
15 |
14
|
impcom |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑦 ‘ 0 ) ∈ 𝑉 ) |
16 |
|
simpr |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑥 = ( 𝑦 ‘ 0 ) ) → 𝑥 = ( 𝑦 ‘ 0 ) ) |
17 |
16
|
eqcomd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑥 = ( 𝑦 ‘ 0 ) ) → ( 𝑦 ‘ 0 ) = 𝑥 ) |
18 |
17
|
biantrud |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑥 = ( 𝑦 ‘ 0 ) ) → ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑥 ) ) ) |
19 |
18
|
bicomd |
⊢ ( ( ( 𝐺 ∈ USGraph ∧ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ∧ 𝑥 = ( 𝑦 ‘ 0 ) ) → ( ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑥 ) ↔ 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) |
20 |
15 19
|
rspcedv |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ∃ 𝑥 ∈ 𝑉 ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑥 ) ) ) |
21 |
20
|
adantld |
⊢ ( ( 𝐺 ∈ USGraph ∧ ( ( 𝑦 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑦 ) = 𝑁 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑦 ‘ 𝑖 ) , ( 𝑦 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑦 ) , ( 𝑦 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( ( 𝐺 ∈ USGraph ∧ 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ∃ 𝑥 ∈ 𝑉 ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑥 ) ) ) |
22 |
9 21
|
mpcom |
⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) → ∃ 𝑥 ∈ 𝑉 ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑥 ) ) |
23 |
22
|
ex |
⊢ ( 𝐺 ∈ USGraph → ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ∃ 𝑥 ∈ 𝑉 ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑥 ) ) ) |
24 |
6 23
|
impbid2 |
⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ 𝑉 ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ ( 𝑦 ‘ 0 ) = 𝑥 ) ↔ 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) |
25 |
4 24
|
syl5bb |
⊢ ( 𝐺 ∈ USGraph → ( ∃ 𝑥 ∈ 𝑉 𝑦 ∈ ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ↔ 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ) ) |
26 |
2 25
|
bitr2id |
⊢ ( 𝐺 ∈ USGraph → ( 𝑦 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ 𝑦 ∈ ∪ 𝑥 ∈ 𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) |
27 |
26
|
eqrdv |
⊢ ( 𝐺 ∈ USGraph → ( 𝑁 ClWWalksN 𝐺 ) = ∪ 𝑥 ∈ 𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) |