| Step | Hyp | Ref | Expression | 
						
							| 1 |  | clwwlknun.v | ⊢ 𝑉  =  ( Vtx ‘ 𝐺 ) | 
						
							| 2 |  | eliun | ⊢ ( 𝑦  ∈  ∪  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  ∃ 𝑥  ∈  𝑉 𝑦  ∈  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) | 
						
							| 3 |  | isclwwlknon | ⊢ ( 𝑦  ∈  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑥 ) ) | 
						
							| 4 | 3 | rexbii | ⊢ ( ∃ 𝑥  ∈  𝑉 𝑦  ∈  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  ∃ 𝑥  ∈  𝑉 ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑥 ) ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑥 )  →  𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 6 | 5 | rexlimivw | ⊢ ( ∃ 𝑥  ∈  𝑉 ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑥 )  →  𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) | 
						
							| 7 |  | eqid | ⊢ ( Edg ‘ 𝐺 )  =  ( Edg ‘ 𝐺 ) | 
						
							| 8 | 1 7 | clwwlknp | ⊢ ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) | 
						
							| 9 | 8 | anim2i | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  ( 𝐺  ∈  USGraph  ∧  ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) ) ) | 
						
							| 10 | 7 1 | usgrpredgv | ⊢ ( ( 𝐺  ∈  USGraph  ∧  { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( ( lastS ‘ 𝑦 )  ∈  𝑉  ∧  ( 𝑦 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 11 | 10 | ex | ⊢ ( 𝐺  ∈  USGraph  →  ( { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 )  →  ( ( lastS ‘ 𝑦 )  ∈  𝑉  ∧  ( 𝑦 ‘ 0 )  ∈  𝑉 ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( ( lastS ‘ 𝑦 )  ∈  𝑉  ∧  ( 𝑦 ‘ 0 )  ∈  𝑉 )  →  ( 𝑦 ‘ 0 )  ∈  𝑉 ) | 
						
							| 13 | 11 12 | syl6com | ⊢ ( { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 )  →  ( 𝐺  ∈  USGraph  →  ( 𝑦 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 14 | 13 | 3ad2ant3 | ⊢ ( ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) )  →  ( 𝐺  ∈  USGraph  →  ( 𝑦 ‘ 0 )  ∈  𝑉 ) ) | 
						
							| 15 | 14 | impcom | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑦 ‘ 0 )  ∈  𝑉 ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑥  =  ( 𝑦 ‘ 0 ) )  →  𝑥  =  ( 𝑦 ‘ 0 ) ) | 
						
							| 17 | 16 | eqcomd | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑥  =  ( 𝑦 ‘ 0 ) )  →  ( 𝑦 ‘ 0 )  =  𝑥 ) | 
						
							| 18 | 17 | biantrud | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑥  =  ( 𝑦 ‘ 0 ) )  →  ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ↔  ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑥 ) ) ) | 
						
							| 19 | 18 | bicomd | ⊢ ( ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  ∧  𝑥  =  ( 𝑦 ‘ 0 ) )  →  ( ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑥 )  ↔  𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) ) | 
						
							| 20 | 15 19 | rspcedv | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ∃ 𝑥  ∈  𝑉 ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑥 ) ) ) | 
						
							| 21 | 20 | adantld | ⊢ ( ( 𝐺  ∈  USGraph  ∧  ( ( 𝑦  ∈  Word  𝑉  ∧  ( ♯ ‘ 𝑦 )  =  𝑁 )  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( 𝑁  −  1 ) ) { ( 𝑦 ‘ 𝑖 ) ,  ( 𝑦 ‘ ( 𝑖  +  1 ) ) }  ∈  ( Edg ‘ 𝐺 )  ∧  { ( lastS ‘ 𝑦 ) ,  ( 𝑦 ‘ 0 ) }  ∈  ( Edg ‘ 𝐺 ) ) )  →  ( ( 𝐺  ∈  USGraph  ∧  𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  ∃ 𝑥  ∈  𝑉 ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑥 ) ) ) | 
						
							| 22 | 9 21 | mpcom | ⊢ ( ( 𝐺  ∈  USGraph  ∧  𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 ) )  →  ∃ 𝑥  ∈  𝑉 ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑥 ) ) | 
						
							| 23 | 22 | ex | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  →  ∃ 𝑥  ∈  𝑉 ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑥 ) ) ) | 
						
							| 24 | 6 23 | impbid2 | ⊢ ( 𝐺  ∈  USGraph  →  ( ∃ 𝑥  ∈  𝑉 ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ∧  ( 𝑦 ‘ 0 )  =  𝑥 )  ↔  𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) ) | 
						
							| 25 | 4 24 | bitrid | ⊢ ( 𝐺  ∈  USGraph  →  ( ∃ 𝑥  ∈  𝑉 𝑦  ∈  ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 )  ↔  𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 ) ) ) | 
						
							| 26 | 2 25 | bitr2id | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑦  ∈  ( 𝑁  ClWWalksN  𝐺 )  ↔  𝑦  ∈  ∪  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) ) | 
						
							| 27 | 26 | eqrdv | ⊢ ( 𝐺  ∈  USGraph  →  ( 𝑁  ClWWalksN  𝐺 )  =  ∪  𝑥  ∈  𝑉 ( 𝑥 ( ClWWalksNOn ‘ 𝐺 ) 𝑁 ) ) |