Description: A closed walk of a fixed length as word is a word over the vertices. (Contributed by AV, 30-Apr-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | clwwlknwrd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
Assertion | clwwlknwrd | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑊 ∈ Word 𝑉 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clwwlknwrd.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
2 | isclwwlkn | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) | |
3 | 1 | clwwlkbp | ⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ) |
4 | 3 | simp2d | ⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) → 𝑊 ∈ Word 𝑉 ) |
5 | 4 | adantr | ⊢ ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → 𝑊 ∈ Word 𝑉 ) |
6 | 2 5 | sylbi | ⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑊 ∈ Word 𝑉 ) |