Step |
Hyp |
Ref |
Expression |
1 |
|
clwwlkwwlksb.v |
⊢ 𝑉 = ( Vtx ‘ 𝐺 ) |
2 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
3 |
|
ccatws1lenp1b |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( 𝑁 + 1 ) ↔ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
4 |
2 3
|
sylan2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( 𝑁 + 1 ) ↔ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
5 |
4
|
anbi2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( 𝑁 + 1 ) ) ↔ ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
6 |
|
simpl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) → 𝑊 ∈ Word 𝑉 ) |
7 |
|
eleq1 |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ ↔ 𝑁 ∈ ℕ ) ) |
8 |
|
len0nnbi |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
9 |
8
|
biimprcd |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( 𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅ ) ) |
10 |
7 9
|
syl6bir |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑁 ∈ ℕ → ( 𝑊 ∈ Word 𝑉 → 𝑊 ≠ ∅ ) ) ) |
11 |
10
|
com13 |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑁 ∈ ℕ → ( ( ♯ ‘ 𝑊 ) = 𝑁 → 𝑊 ≠ ∅ ) ) ) |
12 |
11
|
imp31 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → 𝑊 ≠ ∅ ) |
13 |
1
|
clwwlkwwlksb |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ) ) |
14 |
6 12 13
|
syl2an2r |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ) ) |
15 |
14
|
bicomd |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) → ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ↔ 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ) ) |
16 |
15
|
ex |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ↔ 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ) ) ) |
17 |
16
|
pm5.32rd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
18 |
5 17
|
bitrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( 𝑁 + 1 ) ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
19 |
2
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℕ0 ) |
20 |
|
iswwlksn |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( 𝑁 + 1 ) ) ) ) |
21 |
19 20
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ) = ( 𝑁 + 1 ) ) ) ) |
22 |
|
isclwwlkn |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) |
23 |
22
|
a1i |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ) ) ) |
24 |
18 21 23
|
3bitr4rd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( 𝑊 ++ 〈“ ( 𝑊 ‘ 0 ) ”〉 ) ∈ ( 𝑁 WWalksN 𝐺 ) ) ) |