| Step |
Hyp |
Ref |
Expression |
| 1 |
|
clwwlkclwwlkn |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ) |
| 2 |
|
clwwlknlen |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( ♯ ‘ 𝑊 ) = 𝑁 ) |
| 3 |
2
|
eqcomd |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑁 = ( ♯ ‘ 𝑊 ) ) |
| 4 |
3
|
oveq2d |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 0 ... 𝑁 ) = ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 5 |
4
|
eleq2d |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → ( 𝑀 ∈ ( 0 ... 𝑁 ) ↔ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 6 |
5
|
biimpa |
⊢ ( ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 7 |
|
clwwisshclwwsn |
⊢ ( ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ∧ 𝑀 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝑀 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |
| 8 |
1 6 7
|
syl2an2r |
⊢ ( ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 cyclShift 𝑀 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |
| 9 |
|
eqid |
⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) |
| 10 |
9
|
clwwlknwrd |
⊢ ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 11 |
|
elfzelz |
⊢ ( 𝑀 ∈ ( 0 ... 𝑁 ) → 𝑀 ∈ ℤ ) |
| 12 |
|
cshwlen |
⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑀 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 13 |
10 11 12
|
syl2an |
⊢ ( ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
| 14 |
2
|
adantr |
⊢ ( ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ 𝑊 ) = 𝑁 ) |
| 15 |
13 14
|
eqtrd |
⊢ ( ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = 𝑁 ) |
| 16 |
|
isclwwlkn |
⊢ ( ( 𝑊 cyclShift 𝑀 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( ( 𝑊 cyclShift 𝑀 ) ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 cyclShift 𝑀 ) ) = 𝑁 ) ) |
| 17 |
8 15 16
|
sylanbrc |
⊢ ( ( 𝑊 ∈ ( 𝑁 ClWWalksN 𝐺 ) ∧ 𝑀 ∈ ( 0 ... 𝑁 ) ) → ( 𝑊 cyclShift 𝑀 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |