Step |
Hyp |
Ref |
Expression |
1 |
|
h0elch |
⊢ 0ℋ ∈ Cℋ |
2 |
1
|
choccli |
⊢ ( ⊥ ‘ 0ℋ ) ∈ Cℋ |
3 |
|
chjcl |
⊢ ( ( ( ⊥ ‘ 0ℋ ) ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∈ Cℋ ) |
4 |
2 3
|
mpan |
⊢ ( 𝐴 ∈ Cℋ → ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∈ Cℋ ) |
5 |
|
chm0 |
⊢ ( ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∈ Cℋ → ( ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∩ 0ℋ ) = 0ℋ ) |
6 |
4 5
|
syl |
⊢ ( 𝐴 ∈ Cℋ → ( ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∩ 0ℋ ) = 0ℋ ) |
7 |
|
chm0 |
⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∩ 0ℋ ) = 0ℋ ) |
8 |
6 7
|
eqtr4d |
⊢ ( 𝐴 ∈ Cℋ → ( ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∩ 0ℋ ) = ( 𝐴 ∩ 0ℋ ) ) |
9 |
|
incom |
⊢ ( 0ℋ ∩ ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ) = ( ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ∩ 0ℋ ) |
10 |
|
incom |
⊢ ( 0ℋ ∩ 𝐴 ) = ( 𝐴 ∩ 0ℋ ) |
11 |
8 9 10
|
3eqtr4g |
⊢ ( 𝐴 ∈ Cℋ → ( 0ℋ ∩ ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ) = ( 0ℋ ∩ 𝐴 ) ) |
12 |
|
cmbr3 |
⊢ ( ( 0ℋ ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 0ℋ 𝐶ℋ 𝐴 ↔ ( 0ℋ ∩ ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ) = ( 0ℋ ∩ 𝐴 ) ) ) |
13 |
1 12
|
mpan |
⊢ ( 𝐴 ∈ Cℋ → ( 0ℋ 𝐶ℋ 𝐴 ↔ ( 0ℋ ∩ ( ( ⊥ ‘ 0ℋ ) ∨ℋ 𝐴 ) ) = ( 0ℋ ∩ 𝐴 ) ) ) |
14 |
11 13
|
mpbird |
⊢ ( 𝐴 ∈ Cℋ → 0ℋ 𝐶ℋ 𝐴 ) |