Metamath Proof Explorer


Theorem cm0

Description: The zero Hilbert lattice element commutes with every element. (Contributed by NM, 16-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion cm0 ( 𝐴C → 0 𝐶 𝐴 )

Proof

Step Hyp Ref Expression
1 h0elch 0C
2 1 choccli ( ⊥ ‘ 0 ) ∈ C
3 chjcl ( ( ( ⊥ ‘ 0 ) ∈ C𝐴C ) → ( ( ⊥ ‘ 0 ) ∨ 𝐴 ) ∈ C )
4 2 3 mpan ( 𝐴C → ( ( ⊥ ‘ 0 ) ∨ 𝐴 ) ∈ C )
5 chm0 ( ( ( ⊥ ‘ 0 ) ∨ 𝐴 ) ∈ C → ( ( ( ⊥ ‘ 0 ) ∨ 𝐴 ) ∩ 0 ) = 0 )
6 4 5 syl ( 𝐴C → ( ( ( ⊥ ‘ 0 ) ∨ 𝐴 ) ∩ 0 ) = 0 )
7 chm0 ( 𝐴C → ( 𝐴 ∩ 0 ) = 0 )
8 6 7 eqtr4d ( 𝐴C → ( ( ( ⊥ ‘ 0 ) ∨ 𝐴 ) ∩ 0 ) = ( 𝐴 ∩ 0 ) )
9 incom ( 0 ∩ ( ( ⊥ ‘ 0 ) ∨ 𝐴 ) ) = ( ( ( ⊥ ‘ 0 ) ∨ 𝐴 ) ∩ 0 )
10 incom ( 0𝐴 ) = ( 𝐴 ∩ 0 )
11 8 9 10 3eqtr4g ( 𝐴C → ( 0 ∩ ( ( ⊥ ‘ 0 ) ∨ 𝐴 ) ) = ( 0𝐴 ) )
12 cmbr3 ( ( 0C𝐴C ) → ( 0 𝐶 𝐴 ↔ ( 0 ∩ ( ( ⊥ ‘ 0 ) ∨ 𝐴 ) ) = ( 0𝐴 ) ) )
13 1 12 mpan ( 𝐴C → ( 0 𝐶 𝐴 ↔ ( 0 ∩ ( ( ⊥ ‘ 0 ) ∨ 𝐴 ) ) = ( 0𝐴 ) ) )
14 11 13 mpbird ( 𝐴C → 0 𝐶 𝐴 )