Metamath Proof Explorer


Theorem cm2ji

Description: A lattice element that commutes with two others also commutes with their join. Theorem 4.2 of Beran p. 49. (Contributed by NM, 11-May-2009) (New usage is discouraged.)

Ref Expression
Hypotheses fh1.1 𝐴C
fh1.2 𝐵C
fh1.3 𝐶C
fh1.4 𝐴 𝐶 𝐵
fh1.5 𝐴 𝐶 𝐶
Assertion cm2ji 𝐴 𝐶 ( 𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 fh1.1 𝐴C
2 fh1.2 𝐵C
3 fh1.3 𝐶C
4 fh1.4 𝐴 𝐶 𝐵
5 fh1.5 𝐴 𝐶 𝐶
6 1 2 3 3pm3.2i ( 𝐴C𝐵C𝐶C )
7 4 5 pm3.2i ( 𝐴 𝐶 𝐵𝐴 𝐶 𝐶 )
8 cm2j ( ( ( 𝐴C𝐵C𝐶C ) ∧ ( 𝐴 𝐶 𝐵𝐴 𝐶 𝐶 ) ) → 𝐴 𝐶 ( 𝐵 𝐶 ) )
9 6 7 8 mp2an 𝐴 𝐶 ( 𝐵 𝐶 )