Database
COMPLEX HILBERT SPACE EXPLORER (DEPRECATED)
Properties of Hilbert subspaces
Foulis-Holland theorem
cm2ji
Metamath Proof Explorer
Description: A lattice element that commutes with two others also commutes with their
join. Theorem 4.2 of Beran p. 49. (Contributed by NM , 11-May-2009)
(New usage is discouraged.)
Ref
Expression
Hypotheses
fh1.1
⊢ 𝐴 ∈ C ℋ
fh1.2
⊢ 𝐵 ∈ C ℋ
fh1.3
⊢ 𝐶 ∈ C ℋ
fh1.4
⊢ 𝐴 𝐶ℋ 𝐵
fh1.5
⊢ 𝐴 𝐶ℋ 𝐶
Assertion
cm2ji
⊢ 𝐴 𝐶ℋ ( 𝐵 ∨ℋ 𝐶 )
Proof
Step
Hyp
Ref
Expression
1
fh1.1
⊢ 𝐴 ∈ C ℋ
2
fh1.2
⊢ 𝐵 ∈ C ℋ
3
fh1.3
⊢ 𝐶 ∈ C ℋ
4
fh1.4
⊢ 𝐴 𝐶ℋ 𝐵
5
fh1.5
⊢ 𝐴 𝐶ℋ 𝐶
6
1 2 3
3pm3.2i
⊢ ( 𝐴 ∈ C ℋ ∧ 𝐵 ∈ C ℋ ∧ 𝐶 ∈ C ℋ )
7
4 5
pm3.2i
⊢ ( 𝐴 𝐶ℋ 𝐵 ∧ 𝐴 𝐶ℋ 𝐶 )
8
cm2j
⊢ ( ( ( 𝐴 ∈ C ℋ ∧ 𝐵 ∈ C ℋ ∧ 𝐶 ∈ C ℋ ) ∧ ( 𝐴 𝐶ℋ 𝐵 ∧ 𝐴 𝐶ℋ 𝐶 ) ) → 𝐴 𝐶ℋ ( 𝐵 ∨ℋ 𝐶 ) )
9
6 7 8
mp2an
⊢ 𝐴 𝐶ℋ ( 𝐵 ∨ℋ 𝐶 )