Database COMPLEX HILBERT SPACE EXPLORER (DEPRECATED) Properties of Hilbert subspaces Foulis-Holland theorem cm2ji  
				
		 
		
			
		 
		Description:   A lattice element that commutes with two others also commutes with their
       join.  Theorem 4.2 of Beran  p. 49.  (Contributed by NM , 11-May-2009) 
       (New usage is discouraged.) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						fh1.1 ⊢  𝐴   ∈   C ℋ    
					
						fh1.2 ⊢  𝐵   ∈   C ℋ    
					
						fh1.3 ⊢  𝐶   ∈   C ℋ    
					
						fh1.4 ⊢  𝐴   𝐶ℋ   𝐵   
					
						fh1.5 ⊢  𝐴   𝐶ℋ   𝐶   
				
					Assertion 
					cm2ji ⊢   𝐴   𝐶ℋ   ( 𝐵   ∨ℋ   𝐶  )  
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							fh1.1 ⊢  𝐴   ∈   C ℋ    
						
							2 
								
							 
							fh1.2 ⊢  𝐵   ∈   C ℋ    
						
							3 
								
							 
							fh1.3 ⊢  𝐶   ∈   C ℋ    
						
							4 
								
							 
							fh1.4 ⊢  𝐴   𝐶ℋ   𝐵   
						
							5 
								
							 
							fh1.5 ⊢  𝐴   𝐶ℋ   𝐶   
						
							6 
								1  2  3 
							 
							3pm3.2i ⊢  ( 𝐴   ∈   C ℋ    ∧  𝐵   ∈   C ℋ    ∧  𝐶   ∈   C ℋ   )  
						
							7 
								4  5 
							 
							pm3.2i ⊢  ( 𝐴   𝐶ℋ   𝐵   ∧  𝐴   𝐶ℋ   𝐶  )  
						
							8 
								
							 
							cm2j ⊢  ( ( ( 𝐴   ∈   C ℋ    ∧  𝐵   ∈   C ℋ    ∧  𝐶   ∈   C ℋ   )  ∧  ( 𝐴   𝐶ℋ   𝐵   ∧  𝐴   𝐶ℋ   𝐶  ) )  →  𝐴   𝐶ℋ   ( 𝐵   ∨ℋ   𝐶  ) )  
						
							9 
								6  7  8 
							 
							mp2an ⊢  𝐴   𝐶ℋ   ( 𝐵   ∨ℋ   𝐶  )