| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∈   Cℋ   ↔  𝐴  ∈   Cℋ  ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							anbi1d | 
							⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ∈   Cℋ   ∧  𝑦  ∈   Cℋ  )  ↔  ( 𝐴  ∈   Cℋ   ∧  𝑦  ∈   Cℋ  ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							id | 
							⊢ ( 𝑥  =  𝐴  →  𝑥  =  𝐴 )  | 
						
						
							| 4 | 
							
								
							 | 
							ineq1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∩  𝑦 )  =  ( 𝐴  ∩  𝑦 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							ineq1 | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  ∩  ( ⊥ ‘ 𝑦 ) )  =  ( 𝐴  ∩  ( ⊥ ‘ 𝑦 ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							oveq12d | 
							⊢ ( 𝑥  =  𝐴  →  ( ( 𝑥  ∩  𝑦 )  ∨ℋ  ( 𝑥  ∩  ( ⊥ ‘ 𝑦 ) ) )  =  ( ( 𝐴  ∩  𝑦 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝑦 ) ) ) )  | 
						
						
							| 7 | 
							
								3 6
							 | 
							eqeq12d | 
							⊢ ( 𝑥  =  𝐴  →  ( 𝑥  =  ( ( 𝑥  ∩  𝑦 )  ∨ℋ  ( 𝑥  ∩  ( ⊥ ‘ 𝑦 ) ) )  ↔  𝐴  =  ( ( 𝐴  ∩  𝑦 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝑦 ) ) ) ) )  | 
						
						
							| 8 | 
							
								2 7
							 | 
							anbi12d | 
							⊢ ( 𝑥  =  𝐴  →  ( ( ( 𝑥  ∈   Cℋ   ∧  𝑦  ∈   Cℋ  )  ∧  𝑥  =  ( ( 𝑥  ∩  𝑦 )  ∨ℋ  ( 𝑥  ∩  ( ⊥ ‘ 𝑦 ) ) ) )  ↔  ( ( 𝐴  ∈   Cℋ   ∧  𝑦  ∈   Cℋ  )  ∧  𝐴  =  ( ( 𝐴  ∩  𝑦 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝑦 ) ) ) ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							eleq1 | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ∈   Cℋ   ↔  𝐵  ∈   Cℋ  ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							anbi2d | 
							⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  ∈   Cℋ   ∧  𝑦  ∈   Cℋ  )  ↔  ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							ineq2 | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ∩  𝑦 )  =  ( 𝐴  ∩  𝐵 ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑦  =  𝐵  →  ( ⊥ ‘ 𝑦 )  =  ( ⊥ ‘ 𝐵 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							ineq2d | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝐴  ∩  ( ⊥ ‘ 𝑦 ) )  =  ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							oveq12d | 
							⊢ ( 𝑦  =  𝐵  →  ( ( 𝐴  ∩  𝑦 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝑦 ) ) )  =  ( ( 𝐴  ∩  𝐵 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							eqeq2d | 
							⊢ ( 𝑦  =  𝐵  →  ( 𝐴  =  ( ( 𝐴  ∩  𝑦 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝑦 ) ) )  ↔  𝐴  =  ( ( 𝐴  ∩  𝐵 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) ) ) ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							anbi12d | 
							⊢ ( 𝑦  =  𝐵  →  ( ( ( 𝐴  ∈   Cℋ   ∧  𝑦  ∈   Cℋ  )  ∧  𝐴  =  ( ( 𝐴  ∩  𝑦 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝑦 ) ) ) )  ↔  ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  ∧  𝐴  =  ( ( 𝐴  ∩  𝐵 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) ) ) ) ) )  | 
						
						
							| 17 | 
							
								
							 | 
							df-cm | 
							⊢  𝐶ℋ   =  { 〈 𝑥 ,  𝑦 〉  ∣  ( ( 𝑥  ∈   Cℋ   ∧  𝑦  ∈   Cℋ  )  ∧  𝑥  =  ( ( 𝑥  ∩  𝑦 )  ∨ℋ  ( 𝑥  ∩  ( ⊥ ‘ 𝑦 ) ) ) ) }  | 
						
						
							| 18 | 
							
								8 16 17
							 | 
							brabg | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  𝐶ℋ  𝐵  ↔  ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  ∧  𝐴  =  ( ( 𝐴  ∩  𝐵 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) ) ) ) ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							bianabs | 
							⊢ ( ( 𝐴  ∈   Cℋ   ∧  𝐵  ∈   Cℋ  )  →  ( 𝐴  𝐶ℋ  𝐵  ↔  𝐴  =  ( ( 𝐴  ∩  𝐵 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) ) ) ) )  |