| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
1 2
|
cmcm4i |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) |
| 4 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 5 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
| 6 |
4 5
|
cmbri |
⊢ ( ( ⊥ ‘ 𝐴 ) 𝐶ℋ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐴 ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 7 |
|
eqcom |
⊢ ( 𝐴 = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ↔ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = 𝐴 ) |
| 8 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
| 9 |
1 5
|
chjcli |
⊢ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
| 10 |
8 9
|
chincli |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ Cℋ |
| 11 |
10 1
|
chcon3i |
⊢ ( ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = 𝐴 ↔ ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 12 |
8 9
|
chdmm1i |
⊢ ( ⊥ ‘ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∨ℋ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 13 |
1 2
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |
| 14 |
1 5
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
| 15 |
13 14
|
oveq12i |
⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∨ℋ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 16 |
12 15
|
eqtri |
⊢ ( ⊥ ‘ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 17 |
16
|
eqeq2i |
⊢ ( ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ ( ⊥ ‘ 𝐴 ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
| 18 |
7 11 17
|
3bitrri |
⊢ ( ( ⊥ ‘ 𝐴 ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ 𝐴 = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
| 19 |
3 6 18
|
3bitri |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |