Metamath Proof Explorer


Theorem cmbr2i

Description: Alternate definition of the commutes relation. Remark in Kalmbach p. 23. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 𝐴C
pjoml2.2 𝐵C
Assertion cmbr2i ( 𝐴 𝐶 𝐵𝐴 = ( ( 𝐴 𝐵 ) ∩ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) )

Proof

Step Hyp Ref Expression
1 pjoml2.1 𝐴C
2 pjoml2.2 𝐵C
3 1 2 cmcm4i ( 𝐴 𝐶 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝐶 ( ⊥ ‘ 𝐵 ) )
4 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
5 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
6 4 5 cmbri ( ( ⊥ ‘ 𝐴 ) 𝐶 ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐴 ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) )
7 eqcom ( 𝐴 = ( ( 𝐴 𝐵 ) ∩ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ↔ ( ( 𝐴 𝐵 ) ∩ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) = 𝐴 )
8 1 2 chjcli ( 𝐴 𝐵 ) ∈ C
9 1 5 chjcli ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ∈ C
10 8 9 chincli ( ( 𝐴 𝐵 ) ∩ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ∈ C
11 10 1 chcon3i ( ( ( 𝐴 𝐵 ) ∩ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) = 𝐴 ↔ ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ ( ( 𝐴 𝐵 ) ∩ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) )
12 8 9 chdmm1i ( ⊥ ‘ ( ( 𝐴 𝐵 ) ∩ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ ( 𝐴 𝐵 ) ) ∨ ( ⊥ ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) )
13 1 2 chdmj1i ( ⊥ ‘ ( 𝐴 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) )
14 1 5 chdmj1i ( ⊥ ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) )
15 13 14 oveq12i ( ( ⊥ ‘ ( 𝐴 𝐵 ) ) ∨ ( ⊥ ‘ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
16 12 15 eqtri ( ⊥ ‘ ( ( 𝐴 𝐵 ) ∩ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )
17 16 eqeq2i ( ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ ( ( 𝐴 𝐵 ) ∩ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) ) ↔ ( ⊥ ‘ 𝐴 ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) )
18 7 11 17 3bitrri ( ( ⊥ ‘ 𝐴 ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ 𝐴 = ( ( 𝐴 𝐵 ) ∩ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) )
19 3 6 18 3bitri ( 𝐴 𝐶 𝐵𝐴 = ( ( 𝐴 𝐵 ) ∩ ( 𝐴 ( ⊥ ‘ 𝐵 ) ) ) )