Step |
Hyp |
Ref |
Expression |
1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1 2
|
cmcm4i |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) |
4 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
5 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
6 |
4 5
|
cmbri |
⊢ ( ( ⊥ ‘ 𝐴 ) 𝐶ℋ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐴 ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
7 |
|
eqcom |
⊢ ( 𝐴 = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ↔ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = 𝐴 ) |
8 |
1 2
|
chjcli |
⊢ ( 𝐴 ∨ℋ 𝐵 ) ∈ Cℋ |
9 |
1 5
|
chjcli |
⊢ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
10 |
8 9
|
chincli |
⊢ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ∈ Cℋ |
11 |
10 1
|
chcon3i |
⊢ ( ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = 𝐴 ↔ ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
12 |
8 9
|
chdmm1i |
⊢ ( ⊥ ‘ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∨ℋ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
13 |
1 2
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) |
14 |
1 5
|
chdmj1i |
⊢ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) |
15 |
13 14
|
oveq12i |
⊢ ( ( ⊥ ‘ ( 𝐴 ∨ℋ 𝐵 ) ) ∨ℋ ( ⊥ ‘ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
16 |
12 15
|
eqtri |
⊢ ( ⊥ ‘ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) |
17 |
16
|
eqeq2i |
⊢ ( ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ ( ⊥ ‘ 𝐴 ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ) |
18 |
7 11 17
|
3bitrri |
⊢ ( ( ⊥ ‘ 𝐴 ) = ( ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ 𝐴 ) ∩ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) ↔ 𝐴 = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |
19 |
3 6 18
|
3bitri |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ( ( 𝐴 ∨ℋ 𝐵 ) ∩ ( 𝐴 ∨ℋ ( ⊥ ‘ 𝐵 ) ) ) ) |