Step |
Hyp |
Ref |
Expression |
1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
1 2
|
cmcmi |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴 ) |
4 |
2 1
|
cmbr2i |
⊢ ( 𝐵 𝐶ℋ 𝐴 ↔ 𝐵 = ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) |
5 |
3 4
|
bitri |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐵 = ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) |
6 |
|
ineq2 |
⊢ ( 𝐵 = ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) → ( 𝐴 ∩ 𝐵 ) = ( 𝐴 ∩ ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) ) |
7 |
|
inass |
⊢ ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝐴 ∩ ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) |
8 |
2 1
|
chjcomi |
⊢ ( 𝐵 ∨ℋ 𝐴 ) = ( 𝐴 ∨ℋ 𝐵 ) |
9 |
8
|
ineq2i |
⊢ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) = ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) |
10 |
1 2
|
chabs2i |
⊢ ( 𝐴 ∩ ( 𝐴 ∨ℋ 𝐵 ) ) = 𝐴 |
11 |
9 10
|
eqtri |
⊢ ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) = 𝐴 |
12 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
13 |
2 12
|
chjcomi |
⊢ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
14 |
11 13
|
ineq12i |
⊢ ( ( 𝐴 ∩ ( 𝐵 ∨ℋ 𝐴 ) ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
15 |
7 14
|
eqtr3i |
⊢ ( 𝐴 ∩ ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
16 |
6 15
|
eqtr2di |
⊢ ( 𝐵 = ( ( 𝐵 ∨ℋ 𝐴 ) ∩ ( 𝐵 ∨ℋ ( ⊥ ‘ 𝐴 ) ) ) → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) |
17 |
5 16
|
sylbi |
⊢ ( 𝐴 𝐶ℋ 𝐵 → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) |
18 |
|
inss1 |
⊢ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ⊆ 𝐴 |
19 |
2
|
choccli |
⊢ ( ⊥ ‘ 𝐵 ) ∈ Cℋ |
20 |
1 19
|
chincli |
⊢ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∈ Cℋ |
21 |
20 1
|
pjoml2i |
⊢ ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ⊆ 𝐴 → ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ) = 𝐴 ) |
22 |
18 21
|
ax-mp |
⊢ ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ) = 𝐴 |
23 |
20
|
choccli |
⊢ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∈ Cℋ |
24 |
23 1
|
chincli |
⊢ ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ∈ Cℋ |
25 |
20 24
|
chjcomi |
⊢ ( ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ∨ℋ ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ) = ( ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
26 |
22 25
|
eqtr3i |
⊢ 𝐴 = ( ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) |
27 |
1 2
|
chdmm3i |
⊢ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
28 |
27
|
ineq2i |
⊢ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
29 |
|
incom |
⊢ ( 𝐴 ∩ ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) = ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) |
30 |
28 29
|
eqtr3i |
⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) |
31 |
30
|
eqeq1i |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ↔ ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) ) |
32 |
|
oveq1 |
⊢ ( ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) = ( 𝐴 ∩ 𝐵 ) → ( ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
33 |
31 32
|
sylbi |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) → ( ( ( ⊥ ‘ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ∩ 𝐴 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
34 |
26 33
|
syl5eq |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) → 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
35 |
1 2
|
cmbri |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 = ( ( 𝐴 ∩ 𝐵 ) ∨ℋ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) ) |
36 |
34 35
|
sylibr |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) → 𝐴 𝐶ℋ 𝐵 ) |
37 |
17 36
|
impbii |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) |