| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
1 2
|
cmbr3i |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) |
| 4 |
|
inss2 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 |
| 5 |
|
sseq1 |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ↔ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐵 ) ) |
| 6 |
4 5
|
mpbiri |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ) |
| 7 |
|
inss1 |
⊢ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐴 |
| 8 |
7
|
jctl |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐴 ∧ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ) ) |
| 9 |
|
ssin |
⊢ ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐴 ∧ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ) ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 10 |
8 9
|
sylib |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ) |
| 11 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
| 12 |
2 11
|
chub2i |
⊢ 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) |
| 13 |
|
sslin |
⊢ ( 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) → ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) |
| 14 |
12 13
|
ax-mp |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) |
| 15 |
10 14
|
jctir |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
| 16 |
|
eqss |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ↔ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ ( 𝐴 ∩ 𝐵 ) ∧ ( 𝐴 ∩ 𝐵 ) ⊆ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ) ) |
| 17 |
15 16
|
sylibr |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ) |
| 18 |
6 17
|
impbii |
⊢ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) = ( 𝐴 ∩ 𝐵 ) ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ) |
| 19 |
3 18
|
bitri |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ℋ 𝐵 ) ) ⊆ 𝐵 ) |