Metamath Proof Explorer


Theorem cmbr4i

Description: Alternate definition for the commutes relation. (Contributed by NM, 6-Dec-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 𝐴C
pjoml2.2 𝐵C
Assertion cmbr4i ( 𝐴 𝐶 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐵 )

Proof

Step Hyp Ref Expression
1 pjoml2.1 𝐴C
2 pjoml2.2 𝐵C
3 1 2 cmbr3i ( 𝐴 𝐶 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( 𝐴𝐵 ) )
4 inss2 ( 𝐴𝐵 ) ⊆ 𝐵
5 sseq1 ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( 𝐴𝐵 ) → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐵 ↔ ( 𝐴𝐵 ) ⊆ 𝐵 ) )
6 4 5 mpbiri ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( 𝐴𝐵 ) → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐵 )
7 inss1 ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐴
8 7 jctl ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐵 → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐴 ∧ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐵 ) )
9 ssin ( ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐴 ∧ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐵 ) ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ ( 𝐴𝐵 ) )
10 8 9 sylib ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐵 → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ ( 𝐴𝐵 ) )
11 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
12 2 11 chub2i 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 )
13 sslin ( 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) → ( 𝐴𝐵 ) ⊆ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) )
14 12 13 ax-mp ( 𝐴𝐵 ) ⊆ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) )
15 10 14 jctir ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐵 → ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ⊆ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ) )
16 eqss ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( 𝐴𝐵 ) ↔ ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ ( 𝐴𝐵 ) ∧ ( 𝐴𝐵 ) ⊆ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ) )
17 15 16 sylibr ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐵 → ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( 𝐴𝐵 ) )
18 6 17 impbii ( ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( 𝐴𝐵 ) ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐵 )
19 3 18 bitri ( 𝐴 𝐶 𝐵 ↔ ( 𝐴 ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ⊆ 𝐵 )