Metamath Proof Explorer


Theorem cmcm

Description: Commutation is symmetric. Theorem 2(v) of Kalmbach p. 22. (Contributed by NM, 13-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion cmcm ( ( 𝐴C𝐵C ) → ( 𝐴 𝐶 𝐵𝐵 𝐶 𝐴 ) )

Proof

Step Hyp Ref Expression
1 breq1 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐴 𝐶 𝐵 ↔ if ( 𝐴C , 𝐴 , 0 ) 𝐶 𝐵 ) )
2 breq2 ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( 𝐵 𝐶 𝐴𝐵 𝐶 if ( 𝐴C , 𝐴 , 0 ) ) )
3 1 2 bibi12d ( 𝐴 = if ( 𝐴C , 𝐴 , 0 ) → ( ( 𝐴 𝐶 𝐵𝐵 𝐶 𝐴 ) ↔ ( if ( 𝐴C , 𝐴 , 0 ) 𝐶 𝐵𝐵 𝐶 if ( 𝐴C , 𝐴 , 0 ) ) ) )
4 breq2 ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( if ( 𝐴C , 𝐴 , 0 ) 𝐶 𝐵 ↔ if ( 𝐴C , 𝐴 , 0 ) 𝐶 if ( 𝐵C , 𝐵 , 0 ) ) )
5 breq1 ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( 𝐵 𝐶 if ( 𝐴C , 𝐴 , 0 ) ↔ if ( 𝐵C , 𝐵 , 0 ) 𝐶 if ( 𝐴C , 𝐴 , 0 ) ) )
6 4 5 bibi12d ( 𝐵 = if ( 𝐵C , 𝐵 , 0 ) → ( ( if ( 𝐴C , 𝐴 , 0 ) 𝐶 𝐵𝐵 𝐶 if ( 𝐴C , 𝐴 , 0 ) ) ↔ ( if ( 𝐴C , 𝐴 , 0 ) 𝐶 if ( 𝐵C , 𝐵 , 0 ) ↔ if ( 𝐵C , 𝐵 , 0 ) 𝐶 if ( 𝐴C , 𝐴 , 0 ) ) ) )
7 h0elch 0C
8 7 elimel if ( 𝐴C , 𝐴 , 0 ) ∈ C
9 7 elimel if ( 𝐵C , 𝐵 , 0 ) ∈ C
10 8 9 cmcmi ( if ( 𝐴C , 𝐴 , 0 ) 𝐶 if ( 𝐵C , 𝐵 , 0 ) ↔ if ( 𝐵C , 𝐵 , 0 ) 𝐶 if ( 𝐴C , 𝐴 , 0 ) )
11 3 6 10 dedth2h ( ( 𝐴C𝐵C ) → ( 𝐴 𝐶 𝐵𝐵 𝐶 𝐴 ) )