Metamath Proof Explorer


Theorem cmcm2

Description: Commutation with orthocomplement. Theorem 2.3(i) of Beran p. 39. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)

Ref Expression
Assertion cmcm2 ( ( 𝐴C𝐵C ) → ( 𝐴 𝐶 𝐵𝐴 𝐶 ( ⊥ ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 cmcm3 ( ( 𝐵C𝐴C ) → ( 𝐵 𝐶 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝐶 𝐴 ) )
2 1 ancoms ( ( 𝐴C𝐵C ) → ( 𝐵 𝐶 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝐶 𝐴 ) )
3 cmcm ( ( 𝐴C𝐵C ) → ( 𝐴 𝐶 𝐵𝐵 𝐶 𝐴 ) )
4 choccl ( 𝐵C → ( ⊥ ‘ 𝐵 ) ∈ C )
5 cmcm ( ( 𝐴C ∧ ( ⊥ ‘ 𝐵 ) ∈ C ) → ( 𝐴 𝐶 ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐵 ) 𝐶 𝐴 ) )
6 4 5 sylan2 ( ( 𝐴C𝐵C ) → ( 𝐴 𝐶 ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐵 ) 𝐶 𝐴 ) )
7 2 3 6 3bitr4d ( ( 𝐴C𝐵C ) → ( 𝐴 𝐶 𝐵𝐴 𝐶 ( ⊥ ‘ 𝐵 ) ) )