Description: Commutation with orthocomplement. Theorem 2.3(i) of Beran p. 39. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cmcm2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | cmcm3 | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐵 𝐶ℋ 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝐶ℋ 𝐴 ) ) | |
| 2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐵 𝐶ℋ 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝐶ℋ 𝐴 ) ) | 
| 3 | cmcm | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴 ) ) | |
| 4 | choccl | ⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) | |
| 5 | cmcm | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐵 ) 𝐶ℋ 𝐴 ) ) | |
| 6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐵 ) 𝐶ℋ 𝐴 ) ) | 
| 7 | 2 3 6 | 3bitr4d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) ) |