Description: Commutation with orthocomplement. Theorem 2.3(i) of Beran p. 39. (Contributed by NM, 14-Jun-2006) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | cmcm2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmcm3 | ⊢ ( ( 𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → ( 𝐵 𝐶ℋ 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝐶ℋ 𝐴 ) ) | |
2 | 1 | ancoms | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐵 𝐶ℋ 𝐴 ↔ ( ⊥ ‘ 𝐵 ) 𝐶ℋ 𝐴 ) ) |
3 | cmcm | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴 ) ) | |
4 | choccl | ⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) | |
5 | cmcm | ⊢ ( ( 𝐴 ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) → ( 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐵 ) 𝐶ℋ 𝐴 ) ) | |
6 | 4 5 | sylan2 | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐵 ) 𝐶ℋ 𝐴 ) ) |
7 | 2 3 6 | 3bitr4d | ⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐴 𝐶ℋ ( ⊥ ‘ 𝐵 ) ) ) |