| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pjoml2.1 | 
							⊢ 𝐴  ∈   Cℋ   | 
						
						
							| 2 | 
							
								
							 | 
							pjoml2.2 | 
							⊢ 𝐵  ∈   Cℋ   | 
						
						
							| 3 | 
							
								1 2
							 | 
							chincli | 
							⊢ ( 𝐴  ∩  𝐵 )  ∈   Cℋ   | 
						
						
							| 4 | 
							
								2
							 | 
							choccli | 
							⊢ ( ⊥ ‘ 𝐵 )  ∈   Cℋ   | 
						
						
							| 5 | 
							
								1 4
							 | 
							chincli | 
							⊢ ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) )  ∈   Cℋ   | 
						
						
							| 6 | 
							
								3 5
							 | 
							chjcomi | 
							⊢ ( ( 𝐴  ∩  𝐵 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) ) )  =  ( ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) )  ∨ℋ  ( 𝐴  ∩  𝐵 ) )  | 
						
						
							| 7 | 
							
								2
							 | 
							pjococi | 
							⊢ ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) )  =  𝐵  | 
						
						
							| 8 | 
							
								7
							 | 
							ineq2i | 
							⊢ ( 𝐴  ∩  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) )  =  ( 𝐴  ∩  𝐵 )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveq2i | 
							⊢ ( ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )  =  ( ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) )  ∨ℋ  ( 𝐴  ∩  𝐵 ) )  | 
						
						
							| 10 | 
							
								6 9
							 | 
							eqtr4i | 
							⊢ ( ( 𝐴  ∩  𝐵 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) ) )  =  ( ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							eqeq2i | 
							⊢ ( 𝐴  =  ( ( 𝐴  ∩  𝐵 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) ) )  ↔  𝐴  =  ( ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) )  | 
						
						
							| 12 | 
							
								1 2
							 | 
							cmbri | 
							⊢ ( 𝐴  𝐶ℋ  𝐵  ↔  𝐴  =  ( ( 𝐴  ∩  𝐵 )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) ) ) )  | 
						
						
							| 13 | 
							
								1 4
							 | 
							cmbri | 
							⊢ ( 𝐴  𝐶ℋ  ( ⊥ ‘ 𝐵 )  ↔  𝐴  =  ( ( 𝐴  ∩  ( ⊥ ‘ 𝐵 ) )  ∨ℋ  ( 𝐴  ∩  ( ⊥ ‘ ( ⊥ ‘ 𝐵 ) ) ) ) )  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							3bitr4i | 
							⊢ ( 𝐴  𝐶ℋ  𝐵  ↔  𝐴  𝐶ℋ  ( ⊥ ‘ 𝐵 ) )  |