Metamath Proof Explorer
Description: Commutation with orthocomplement. Remark in Kalmbach p. 23.
(Contributed by NM, 4-Nov-2000) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
|
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
|
Assertion |
cmcm3i |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝐶ℋ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
3 |
2 1
|
cmcm2i |
⊢ ( 𝐵 𝐶ℋ 𝐴 ↔ 𝐵 𝐶ℋ ( ⊥ ‘ 𝐴 ) ) |
4 |
1 2
|
cmcmi |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴 ) |
5 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐴 ) ∈ Cℋ |
6 |
5 2
|
cmcmi |
⊢ ( ( ⊥ ‘ 𝐴 ) 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ ( ⊥ ‘ 𝐴 ) ) |
7 |
3 4 6
|
3bitr4i |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝐶ℋ 𝐵 ) |