Metamath Proof Explorer


Theorem cmcm4i

Description: Commutation with orthocomplement. Remark in Kalmbach p. 23. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 𝐴C
pjoml2.2 𝐵C
Assertion cmcm4i ( 𝐴 𝐶 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝐶 ( ⊥ ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 pjoml2.1 𝐴C
2 pjoml2.2 𝐵C
3 1 2 cmcm2i ( 𝐴 𝐶 𝐵𝐴 𝐶 ( ⊥ ‘ 𝐵 ) )
4 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
5 1 4 cmcm3i ( 𝐴 𝐶 ( ⊥ ‘ 𝐵 ) ↔ ( ⊥ ‘ 𝐴 ) 𝐶 ( ⊥ ‘ 𝐵 ) )
6 3 5 bitri ( 𝐴 𝐶 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝐶 ( ⊥ ‘ 𝐵 ) )