Metamath Proof Explorer
Description: Commutation is symmetric. Theorem 2(v) of Kalmbach p. 22.
(Contributed by NM, 7-Aug-2004) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
|
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
|
|
cmcmi.1 |
⊢ 𝐴 𝐶ℋ 𝐵 |
|
Assertion |
cmcmii |
⊢ 𝐵 𝐶ℋ 𝐴 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
|
cmcmi.1 |
⊢ 𝐴 𝐶ℋ 𝐵 |
| 4 |
1 2
|
cmcmi |
⊢ ( 𝐴 𝐶ℋ 𝐵 ↔ 𝐵 𝐶ℋ 𝐴 ) |
| 5 |
3 4
|
mpbi |
⊢ 𝐵 𝐶ℋ 𝐴 |