Metamath Proof Explorer


Theorem cmcmlem

Description: Commutation is symmetric. Theorem 3.4 of Beran p. 45. (Contributed by NM, 3-Nov-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjoml2.1 𝐴C
pjoml2.2 𝐵C
Assertion cmcmlem ( 𝐴 𝐶 𝐵𝐵 𝐶 𝐴 )

Proof

Step Hyp Ref Expression
1 pjoml2.1 𝐴C
2 pjoml2.2 𝐵C
3 1 choccli ( ⊥ ‘ 𝐴 ) ∈ C
4 2 3 chub2i 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 )
5 sseqin2 ( 𝐵 ⊆ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ↔ ( ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ∩ 𝐵 ) = 𝐵 )
6 4 5 mpbi ( ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ∩ 𝐵 ) = 𝐵
7 6 ineq2i ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ∩ 𝐵 ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 )
8 inass ( ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ∩ 𝐵 ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ∩ 𝐵 ) )
9 1 2 chdmm1i ( ⊥ ‘ ( 𝐴𝐵 ) ) = ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) )
10 9 ineq1i ( ( ⊥ ‘ ( 𝐴𝐵 ) ) ∩ 𝐵 ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ 𝐵 )
11 7 8 10 3eqtr4ri ( ( ⊥ ‘ ( 𝐴𝐵 ) ) ∩ 𝐵 ) = ( ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ∩ 𝐵 )
12 1 2 chdmj4i ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) = ( 𝐴𝐵 )
13 1 2 chdmj2i ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) )
14 12 13 oveq12i ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) ∨ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ) = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) )
15 14 eqeq2i ( 𝐴 = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) ∨ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ) ↔ 𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) )
16 15 biimpri ( 𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → 𝐴 = ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) ∨ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ) )
17 16 fveq2d ( 𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ⊥ ‘ 𝐴 ) = ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) ∨ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ) ) )
18 2 choccli ( ⊥ ‘ 𝐵 ) ∈ C
19 3 18 chjcli ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∈ C
20 3 2 chjcli ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ∈ C
21 19 20 chdmj4i ( ⊥ ‘ ( ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ) ∨ ( ⊥ ‘ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ) ) = ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) )
22 17 21 eqtr2di ( 𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) = ( ⊥ ‘ 𝐴 ) )
23 22 ineq1d ( 𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( ( ( ⊥ ‘ 𝐴 ) ∨ ( ⊥ ‘ 𝐵 ) ) ∩ ( ( ⊥ ‘ 𝐴 ) ∨ 𝐵 ) ) ∩ 𝐵 ) = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) )
24 11 23 syl5eq ( 𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( ⊥ ‘ ( 𝐴𝐵 ) ) ∩ 𝐵 ) = ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) )
25 24 oveq2d ( 𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → ( ( 𝐴𝐵 ) ∨ ( ( ⊥ ‘ ( 𝐴𝐵 ) ) ∩ 𝐵 ) ) = ( ( 𝐴𝐵 ) ∨ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) )
26 inss2 ( 𝐴𝐵 ) ⊆ 𝐵
27 1 2 chincli ( 𝐴𝐵 ) ∈ C
28 27 2 pjoml2i ( ( 𝐴𝐵 ) ⊆ 𝐵 → ( ( 𝐴𝐵 ) ∨ ( ( ⊥ ‘ ( 𝐴𝐵 ) ) ∩ 𝐵 ) ) = 𝐵 )
29 26 28 ax-mp ( ( 𝐴𝐵 ) ∨ ( ( ⊥ ‘ ( 𝐴𝐵 ) ) ∩ 𝐵 ) ) = 𝐵
30 incom ( 𝐴𝐵 ) = ( 𝐵𝐴 )
31 incom ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) = ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) )
32 30 31 oveq12i ( ( 𝐴𝐵 ) ∨ ( ( ⊥ ‘ 𝐴 ) ∩ 𝐵 ) ) = ( ( 𝐵𝐴 ) ∨ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) )
33 25 29 32 3eqtr3g ( 𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) → 𝐵 = ( ( 𝐵𝐴 ) ∨ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ) )
34 1 2 cmbri ( 𝐴 𝐶 𝐵𝐴 = ( ( 𝐴𝐵 ) ∨ ( 𝐴 ∩ ( ⊥ ‘ 𝐵 ) ) ) )
35 2 1 cmbri ( 𝐵 𝐶 𝐴𝐵 = ( ( 𝐵𝐴 ) ∨ ( 𝐵 ∩ ( ⊥ ‘ 𝐴 ) ) ) )
36 33 34 35 3imtr4i ( 𝐴 𝐶 𝐵𝐵 𝐶 𝐴 )