| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cmetcau.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
| 2 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
| 3 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 4 |
2 3
|
syl |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
| 5 |
|
caun0 |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → 𝑋 ≠ ∅ ) |
| 6 |
4 5
|
sylan |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → 𝑋 ≠ ∅ ) |
| 7 |
|
n0 |
⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑋 ) |
| 8 |
6 7
|
sylib |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ∃ 𝑥 𝑥 ∈ 𝑋 ) |
| 9 |
|
simpll |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
| 10 |
|
simpr |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 11 |
|
simplr |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) |
| 12 |
|
eqid |
⊢ ( 𝑦 ∈ ℕ ↦ if ( 𝑦 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑦 ) , 𝑥 ) ) = ( 𝑦 ∈ ℕ ↦ if ( 𝑦 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑦 ) , 𝑥 ) ) |
| 13 |
1 9 10 11 12
|
cmetcaulem |
⊢ ( ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) ∧ 𝑥 ∈ 𝑋 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
| 14 |
8 13
|
exlimddv |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |