Metamath Proof Explorer


Theorem cmetcaulem

Description: Lemma for cmetcau . (Contributed by Mario Carneiro, 14-Oct-2015)

Ref Expression
Hypotheses cmetcau.1 𝐽 = ( MetOpen ‘ 𝐷 )
cmetcau.3 ( 𝜑𝐷 ∈ ( CMet ‘ 𝑋 ) )
cmetcau.4 ( 𝜑𝑃𝑋 )
cmetcau.5 ( 𝜑𝐹 ∈ ( Cau ‘ 𝐷 ) )
cmetcau.6 𝐺 = ( 𝑥 ∈ ℕ ↦ if ( 𝑥 ∈ dom 𝐹 , ( 𝐹𝑥 ) , 𝑃 ) )
Assertion cmetcaulem ( 𝜑𝐹 ∈ dom ( ⇝𝑡𝐽 ) )

Proof

Step Hyp Ref Expression
1 cmetcau.1 𝐽 = ( MetOpen ‘ 𝐷 )
2 cmetcau.3 ( 𝜑𝐷 ∈ ( CMet ‘ 𝑋 ) )
3 cmetcau.4 ( 𝜑𝑃𝑋 )
4 cmetcau.5 ( 𝜑𝐹 ∈ ( Cau ‘ 𝐷 ) )
5 cmetcau.6 𝐺 = ( 𝑥 ∈ ℕ ↦ if ( 𝑥 ∈ dom 𝐹 , ( 𝐹𝑥 ) , 𝑃 ) )
6 cmetmet ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
7 2 6 syl ( 𝜑𝐷 ∈ ( Met ‘ 𝑋 ) )
8 metxmet ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
9 7 8 syl ( 𝜑𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
10 1 mopntopon ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) )
11 9 10 syl ( 𝜑𝐽 ∈ ( TopOn ‘ 𝑋 ) )
12 1z 1 ∈ ℤ
13 nnuz ℕ = ( ℤ ‘ 1 )
14 13 uzfbas ( 1 ∈ ℤ → ( ℤ “ ℕ ) ∈ ( fBas ‘ ℕ ) )
15 12 14 mp1i ( 𝜑 → ( ℤ “ ℕ ) ∈ ( fBas ‘ ℕ ) )
16 fgcl ( ( ℤ “ ℕ ) ∈ ( fBas ‘ ℕ ) → ( ℕ filGen ( ℤ “ ℕ ) ) ∈ ( Fil ‘ ℕ ) )
17 15 16 syl ( 𝜑 → ( ℕ filGen ( ℤ “ ℕ ) ) ∈ ( Fil ‘ ℕ ) )
18 elfvdm ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝑋 ∈ dom CMet )
19 2 18 syl ( 𝜑𝑋 ∈ dom CMet )
20 cnex ℂ ∈ V
21 20 a1i ( 𝜑 → ℂ ∈ V )
22 caufpm ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → 𝐹 ∈ ( 𝑋pm ℂ ) )
23 9 4 22 syl2anc ( 𝜑𝐹 ∈ ( 𝑋pm ℂ ) )
24 elpm2g ( ( 𝑋 ∈ dom CMet ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( 𝑋pm ℂ ) ↔ ( 𝐹 : dom 𝐹𝑋 ∧ dom 𝐹 ⊆ ℂ ) ) )
25 24 simprbda ( ( ( 𝑋 ∈ dom CMet ∧ ℂ ∈ V ) ∧ 𝐹 ∈ ( 𝑋pm ℂ ) ) → 𝐹 : dom 𝐹𝑋 )
26 19 21 23 25 syl21anc ( 𝜑𝐹 : dom 𝐹𝑋 )
27 26 adantr ( ( 𝜑𝑥 ∈ ℕ ) → 𝐹 : dom 𝐹𝑋 )
28 27 ffvelrnda ( ( ( 𝜑𝑥 ∈ ℕ ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹𝑥 ) ∈ 𝑋 )
29 3 ad2antrr ( ( ( 𝜑𝑥 ∈ ℕ ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑃𝑋 )
30 28 29 ifclda ( ( 𝜑𝑥 ∈ ℕ ) → if ( 𝑥 ∈ dom 𝐹 , ( 𝐹𝑥 ) , 𝑃 ) ∈ 𝑋 )
31 30 5 fmptd ( 𝜑𝐺 : ℕ ⟶ 𝑋 )
32 flfval ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( ℕ filGen ( ℤ “ ℕ ) ) ∈ ( Fil ‘ ℕ ) ∧ 𝐺 : ℕ ⟶ 𝑋 ) → ( ( 𝐽 fLimf ( ℕ filGen ( ℤ “ ℕ ) ) ) ‘ 𝐺 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ “ ℕ ) ) ) ) )
33 11 17 31 32 syl3anc ( 𝜑 → ( ( 𝐽 fLimf ( ℕ filGen ( ℤ “ ℕ ) ) ) ‘ 𝐺 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ “ ℕ ) ) ) ) )
34 eqid ( ℕ filGen ( ℤ “ ℕ ) ) = ( ℕ filGen ( ℤ “ ℕ ) )
35 34 fmfg ( ( 𝑋 ∈ dom CMet ∧ ( ℤ “ ℕ ) ∈ ( fBas ‘ ℕ ) ∧ 𝐺 : ℕ ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ “ ℕ ) ) = ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ “ ℕ ) ) ) )
36 19 15 31 35 syl3anc ( 𝜑 → ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ “ ℕ ) ) = ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ “ ℕ ) ) ) )
37 36 oveq2d ( 𝜑 → ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ “ ℕ ) ) ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ “ ℕ ) ) ) ) )
38 33 37 eqtr4d ( 𝜑 → ( ( 𝐽 fLimf ( ℕ filGen ( ℤ “ ℕ ) ) ) ‘ 𝐺 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ “ ℕ ) ) ) )
39 biidd ( 𝑧 = 1 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 ) )
40 1zzd ( 𝜑 → 1 ∈ ℤ )
41 13 9 40 iscau3 ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋pm ℂ ) ∧ ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑤 ) ) < 𝑧 ) ) ) )
42 41 simplbda ( ( 𝜑𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑤 ) ) < 𝑧 ) )
43 4 42 mpdan ( 𝜑 → ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑤 ) ) < 𝑧 ) )
44 simp1 ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑤 ) ) < 𝑧 ) → 𝑘 ∈ dom 𝐹 )
45 44 ralimi ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑤 ) ) < 𝑧 ) → ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 )
46 45 reximi ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑤 ) ) < 𝑧 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 )
47 46 ralimi ( ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ𝑘 ) ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑤 ) ) < 𝑧 ) → ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 )
48 43 47 syl ( 𝜑 → ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 )
49 1rp 1 ∈ ℝ+
50 49 a1i ( 𝜑 → 1 ∈ ℝ+ )
51 39 48 50 rspcdva ( 𝜑 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 )
52 dfss3 ( ( ℤ𝑗 ) ⊆ dom 𝐹 ↔ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 )
53 nnsscn ℕ ⊆ ℂ
54 31 53 jctir ( 𝜑 → ( 𝐺 : ℕ ⟶ 𝑋 ∧ ℕ ⊆ ℂ ) )
55 elpm2r ( ( ( 𝑋 ∈ dom CMet ∧ ℂ ∈ V ) ∧ ( 𝐺 : ℕ ⟶ 𝑋 ∧ ℕ ⊆ ℂ ) ) → 𝐺 ∈ ( 𝑋pm ℂ ) )
56 19 21 54 55 syl21anc ( 𝜑𝐺 ∈ ( 𝑋pm ℂ ) )
57 56 adantr ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → 𝐺 ∈ ( 𝑋pm ℂ ) )
58 eqid ( ℤ𝑗 ) = ( ℤ𝑗 )
59 9 adantr ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
60 nnz ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ )
61 60 ad2antrl ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → 𝑗 ∈ ℤ )
62 eqidd ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( 𝐹𝑘 ) = ( 𝐹𝑘 ) )
63 eqidd ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → ( 𝐹𝑚 ) = ( 𝐹𝑚 ) )
64 58 59 61 62 63 iscau4 ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋pm ℂ ) ∧ ∀ 𝑧 ∈ ℝ+𝑚 ∈ ( ℤ𝑗 ) ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) ) ) )
65 64 simplbda ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ∀ 𝑧 ∈ ℝ+𝑚 ∈ ( ℤ𝑗 ) ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) )
66 4 65 mpidan ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → ∀ 𝑧 ∈ ℝ+𝑚 ∈ ( ℤ𝑗 ) ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) )
67 simprl ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → 𝑗 ∈ ℕ )
68 eluznn ( ( 𝑗 ∈ ℕ ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → 𝑚 ∈ ℕ )
69 67 68 sylan ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → 𝑚 ∈ ℕ )
70 eluznn ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑚 ) ) → 𝑘 ∈ ℕ )
71 5 30 dmmptd ( 𝜑 → dom 𝐺 = ℕ )
72 71 adantr ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → dom 𝐺 = ℕ )
73 72 eleq2d ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → ( 𝑘 ∈ dom 𝐺𝑘 ∈ ℕ ) )
74 73 biimpar ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ dom 𝐺 )
75 74 a1d ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ dom 𝐹𝑘 ∈ dom 𝐺 ) )
76 idd ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹𝑘 ) ∈ 𝑋 → ( 𝐹𝑘 ) ∈ 𝑋 ) )
77 idd ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 → ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) )
78 75 76 77 3anim123d ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) → ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) ) )
79 70 78 sylan2 ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑚 ) ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) → ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) ) )
80 79 anassrs ( ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑚 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) → ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) ) )
81 80 ralimdva ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) → ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) ) )
82 69 81 syldan ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → ( ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) → ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) ) )
83 82 reximdva ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → ( ∃ 𝑚 ∈ ( ℤ𝑗 ) ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) → ∃ 𝑚 ∈ ( ℤ𝑗 ) ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) ) )
84 83 ralimdv ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → ( ∀ 𝑧 ∈ ℝ+𝑚 ∈ ( ℤ𝑗 ) ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) → ∀ 𝑧 ∈ ℝ+𝑚 ∈ ( ℤ𝑗 ) ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) ) )
85 66 84 mpd ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → ∀ 𝑧 ∈ ℝ+𝑚 ∈ ( ℤ𝑗 ) ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) )
86 eluznn ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘 ∈ ℕ )
87 67 86 sylan ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘 ∈ ℕ )
88 simprr ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → ( ℤ𝑗 ) ⊆ dom 𝐹 )
89 88 sselda ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → 𝑘 ∈ dom 𝐹 )
90 iftrue ( 𝑘 ∈ dom 𝐹 → if ( 𝑘 ∈ dom 𝐹 , ( 𝐹𝑘 ) , 𝑃 ) = ( 𝐹𝑘 ) )
91 90 adantl ( ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) → if ( 𝑘 ∈ dom 𝐹 , ( 𝐹𝑘 ) , 𝑃 ) = ( 𝐹𝑘 ) )
92 fvex ( 𝐹𝑘 ) ∈ V
93 91 92 eqeltrdi ( ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) → if ( 𝑘 ∈ dom 𝐹 , ( 𝐹𝑘 ) , 𝑃 ) ∈ V )
94 eleq1w ( 𝑥 = 𝑘 → ( 𝑥 ∈ dom 𝐹𝑘 ∈ dom 𝐹 ) )
95 fveq2 ( 𝑥 = 𝑘 → ( 𝐹𝑥 ) = ( 𝐹𝑘 ) )
96 94 95 ifbieq1d ( 𝑥 = 𝑘 → if ( 𝑥 ∈ dom 𝐹 , ( 𝐹𝑥 ) , 𝑃 ) = if ( 𝑘 ∈ dom 𝐹 , ( 𝐹𝑘 ) , 𝑃 ) )
97 96 5 fvmptg ( ( 𝑘 ∈ ℕ ∧ if ( 𝑘 ∈ dom 𝐹 , ( 𝐹𝑘 ) , 𝑃 ) ∈ V ) → ( 𝐺𝑘 ) = if ( 𝑘 ∈ dom 𝐹 , ( 𝐹𝑘 ) , 𝑃 ) )
98 93 97 syldan ( ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) → ( 𝐺𝑘 ) = if ( 𝑘 ∈ dom 𝐹 , ( 𝐹𝑘 ) , 𝑃 ) )
99 98 91 eqtrd ( ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) → ( 𝐺𝑘 ) = ( 𝐹𝑘 ) )
100 87 89 99 syl2anc ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( 𝐺𝑘 ) = ( 𝐹𝑘 ) )
101 88 sselda ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → 𝑚 ∈ dom 𝐹 )
102 69 101 elind ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → 𝑚 ∈ ( ℕ ∩ dom 𝐹 ) )
103 fveq2 ( 𝑘 = 𝑚 → ( 𝐺𝑘 ) = ( 𝐺𝑚 ) )
104 fveq2 ( 𝑘 = 𝑚 → ( 𝐹𝑘 ) = ( 𝐹𝑚 ) )
105 103 104 eqeq12d ( 𝑘 = 𝑚 → ( ( 𝐺𝑘 ) = ( 𝐹𝑘 ) ↔ ( 𝐺𝑚 ) = ( 𝐹𝑚 ) ) )
106 elin ( 𝑘 ∈ ( ℕ ∩ dom 𝐹 ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) )
107 106 99 sylbi ( 𝑘 ∈ ( ℕ ∩ dom 𝐹 ) → ( 𝐺𝑘 ) = ( 𝐹𝑘 ) )
108 105 107 vtoclga ( 𝑚 ∈ ( ℕ ∩ dom 𝐹 ) → ( 𝐺𝑚 ) = ( 𝐹𝑚 ) )
109 102 108 syl ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ𝑗 ) ) → ( 𝐺𝑚 ) = ( 𝐹𝑚 ) )
110 58 59 61 100 109 iscau4 ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → ( 𝐺 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐺 ∈ ( 𝑋pm ℂ ) ∧ ∀ 𝑧 ∈ ℝ+𝑚 ∈ ( ℤ𝑗 ) ∀ 𝑘 ∈ ( ℤ𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 ( 𝐹𝑚 ) ) < 𝑧 ) ) ) )
111 57 85 110 mpbir2and ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ𝑗 ) ⊆ dom 𝐹 ) ) → 𝐺 ∈ ( Cau ‘ 𝐷 ) )
112 111 expr ( ( 𝜑𝑗 ∈ ℕ ) → ( ( ℤ𝑗 ) ⊆ dom 𝐹𝐺 ∈ ( Cau ‘ 𝐷 ) ) )
113 52 112 syl5bir ( ( 𝜑𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹𝐺 ∈ ( Cau ‘ 𝐷 ) ) )
114 113 rexlimdva ( 𝜑 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹𝐺 ∈ ( Cau ‘ 𝐷 ) ) )
115 51 114 mpd ( 𝜑𝐺 ∈ ( Cau ‘ 𝐷 ) )
116 eqid ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ “ ℕ ) ) = ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ “ ℕ ) )
117 13 116 caucfil ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 1 ∈ ℤ ∧ 𝐺 : ℕ ⟶ 𝑋 ) → ( 𝐺 ∈ ( Cau ‘ 𝐷 ) ↔ ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ “ ℕ ) ) ∈ ( CauFil ‘ 𝐷 ) ) )
118 9 40 31 117 syl3anc ( 𝜑 → ( 𝐺 ∈ ( Cau ‘ 𝐷 ) ↔ ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ “ ℕ ) ) ∈ ( CauFil ‘ 𝐷 ) ) )
119 115 118 mpbid ( 𝜑 → ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ “ ℕ ) ) ∈ ( CauFil ‘ 𝐷 ) )
120 1 cmetcvg ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ “ ℕ ) ) ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ “ ℕ ) ) ) ≠ ∅ )
121 2 119 120 syl2anc ( 𝜑 → ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ “ ℕ ) ) ) ≠ ∅ )
122 38 121 eqnetrd ( 𝜑 → ( ( 𝐽 fLimf ( ℕ filGen ( ℤ “ ℕ ) ) ) ‘ 𝐺 ) ≠ ∅ )
123 n0 ( ( ( 𝐽 fLimf ( ℕ filGen ( ℤ “ ℕ ) ) ) ‘ 𝐺 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ “ ℕ ) ) ) ‘ 𝐺 ) )
124 122 123 sylib ( 𝜑 → ∃ 𝑦 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ “ ℕ ) ) ) ‘ 𝐺 ) )
125 13 34 lmflf ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 1 ∈ ℤ ∧ 𝐺 : ℕ ⟶ 𝑋 ) → ( 𝐺 ( ⇝𝑡𝐽 ) 𝑦𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ “ ℕ ) ) ) ‘ 𝐺 ) ) )
126 11 40 31 125 syl3anc ( 𝜑 → ( 𝐺 ( ⇝𝑡𝐽 ) 𝑦𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ “ ℕ ) ) ) ‘ 𝐺 ) ) )
127 23 adantr ( ( 𝜑𝐺 ( ⇝𝑡𝐽 ) 𝑦 ) → 𝐹 ∈ ( 𝑋pm ℂ ) )
128 lmcl ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐺 ( ⇝𝑡𝐽 ) 𝑦 ) → 𝑦𝑋 )
129 11 128 sylan ( ( 𝜑𝐺 ( ⇝𝑡𝐽 ) 𝑦 ) → 𝑦𝑋 )
130 1 9 13 40 lmmbr3 ( 𝜑 → ( 𝐺 ( ⇝𝑡𝐽 ) 𝑦 ↔ ( 𝐺 ∈ ( 𝑋pm ℂ ) ∧ 𝑦𝑋 ∧ ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) )
131 130 biimpa ( ( 𝜑𝐺 ( ⇝𝑡𝐽 ) 𝑦 ) → ( 𝐺 ∈ ( 𝑋pm ℂ ) ∧ 𝑦𝑋 ∧ ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
132 131 simp3d ( ( 𝜑𝐺 ( ⇝𝑡𝐽 ) 𝑦 ) → ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) )
133 r19.26 ( ∀ 𝑧 ∈ ℝ+ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ↔ ( ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
134 13 rexanuz2 ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ↔ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
135 simprl ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → 𝑘 ∈ dom 𝐹 )
136 99 ad2ant2lr ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( 𝐺𝑘 ) = ( 𝐹𝑘 ) )
137 simprr2 ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( 𝐺𝑘 ) ∈ 𝑋 )
138 136 137 eqeltrrd ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( 𝐹𝑘 ) ∈ 𝑋 )
139 136 oveq1d ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( ( 𝐺𝑘 ) 𝐷 𝑦 ) = ( ( 𝐹𝑘 ) 𝐷 𝑦 ) )
140 simprr3 ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 )
141 139 140 eqbrtrrd ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 )
142 135 138 141 3jca ( ( ( 𝜑𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) )
143 142 ex ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
144 86 143 sylan2 ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ𝑗 ) ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
145 144 anassrs ( ( ( 𝜑𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ𝑗 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
146 145 ralimdva ( ( 𝜑𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
147 146 reximdva ( 𝜑 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
148 134 147 syl5bir ( 𝜑 → ( ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
149 148 ralimdv ( 𝜑 → ( ∀ 𝑧 ∈ ℝ+ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
150 133 149 syl5bir ( 𝜑 → ( ( ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
151 48 150 mpand ( 𝜑 → ( ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) → ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
152 151 adantr ( ( 𝜑𝐺 ( ⇝𝑡𝐽 ) 𝑦 ) → ( ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺𝑘 ) 𝐷 𝑦 ) < 𝑧 ) → ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) )
153 132 152 mpd ( ( 𝜑𝐺 ( ⇝𝑡𝐽 ) 𝑦 ) → ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) )
154 9 adantr ( ( 𝜑𝐺 ( ⇝𝑡𝐽 ) 𝑦 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) )
155 1zzd ( ( 𝜑𝐺 ( ⇝𝑡𝐽 ) 𝑦 ) → 1 ∈ ℤ )
156 1 154 13 155 lmmbr3 ( ( 𝜑𝐺 ( ⇝𝑡𝐽 ) 𝑦 ) → ( 𝐹 ( ⇝𝑡𝐽 ) 𝑦 ↔ ( 𝐹 ∈ ( 𝑋pm ℂ ) ∧ 𝑦𝑋 ∧ ∀ 𝑧 ∈ ℝ+𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) )
157 127 129 153 156 mpbir3and ( ( 𝜑𝐺 ( ⇝𝑡𝐽 ) 𝑦 ) → 𝐹 ( ⇝𝑡𝐽 ) 𝑦 )
158 lmrel Rel ( ⇝𝑡𝐽 )
159 158 releldmi ( 𝐹 ( ⇝𝑡𝐽 ) 𝑦𝐹 ∈ dom ( ⇝𝑡𝐽 ) )
160 157 159 syl ( ( 𝜑𝐺 ( ⇝𝑡𝐽 ) 𝑦 ) → 𝐹 ∈ dom ( ⇝𝑡𝐽 ) )
161 160 ex ( 𝜑 → ( 𝐺 ( ⇝𝑡𝐽 ) 𝑦𝐹 ∈ dom ( ⇝𝑡𝐽 ) ) )
162 126 161 sylbird ( 𝜑 → ( 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ “ ℕ ) ) ) ‘ 𝐺 ) → 𝐹 ∈ dom ( ⇝𝑡𝐽 ) ) )
163 162 exlimdv ( 𝜑 → ( ∃ 𝑦 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ “ ℕ ) ) ) ‘ 𝐺 ) → 𝐹 ∈ dom ( ⇝𝑡𝐽 ) ) )
164 124 163 mpd ( 𝜑𝐹 ∈ dom ( ⇝𝑡𝐽 ) )