Step |
Hyp |
Ref |
Expression |
1 |
|
cmetcau.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
|
cmetcau.3 |
⊢ ( 𝜑 → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
3 |
|
cmetcau.4 |
⊢ ( 𝜑 → 𝑃 ∈ 𝑋 ) |
4 |
|
cmetcau.5 |
⊢ ( 𝜑 → 𝐹 ∈ ( Cau ‘ 𝐷 ) ) |
5 |
|
cmetcau.6 |
⊢ 𝐺 = ( 𝑥 ∈ ℕ ↦ if ( 𝑥 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑥 ) , 𝑃 ) ) |
6 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
7 |
2 6
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
8 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
10 |
1
|
mopntopon |
⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
11 |
9 10
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) |
12 |
|
1z |
⊢ 1 ∈ ℤ |
13 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
14 |
13
|
uzfbas |
⊢ ( 1 ∈ ℤ → ( ℤ≥ “ ℕ ) ∈ ( fBas ‘ ℕ ) ) |
15 |
12 14
|
mp1i |
⊢ ( 𝜑 → ( ℤ≥ “ ℕ ) ∈ ( fBas ‘ ℕ ) ) |
16 |
|
fgcl |
⊢ ( ( ℤ≥ “ ℕ ) ∈ ( fBas ‘ ℕ ) → ( ℕ filGen ( ℤ≥ “ ℕ ) ) ∈ ( Fil ‘ ℕ ) ) |
17 |
15 16
|
syl |
⊢ ( 𝜑 → ( ℕ filGen ( ℤ≥ “ ℕ ) ) ∈ ( Fil ‘ ℕ ) ) |
18 |
|
elfvdm |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝑋 ∈ dom CMet ) |
19 |
2 18
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ dom CMet ) |
20 |
|
cnex |
⊢ ℂ ∈ V |
21 |
20
|
a1i |
⊢ ( 𝜑 → ℂ ∈ V ) |
22 |
|
caufpm |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
23 |
9 4 22
|
syl2anc |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
24 |
|
elpm2g |
⊢ ( ( 𝑋 ∈ dom CMet ∧ ℂ ∈ V ) → ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ 𝑋 ∧ dom 𝐹 ⊆ ℂ ) ) ) |
25 |
24
|
simprbda |
⊢ ( ( ( 𝑋 ∈ dom CMet ∧ ℂ ∈ V ) ∧ 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) → 𝐹 : dom 𝐹 ⟶ 𝑋 ) |
26 |
19 21 23 25
|
syl21anc |
⊢ ( 𝜑 → 𝐹 : dom 𝐹 ⟶ 𝑋 ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → 𝐹 : dom 𝐹 ⟶ 𝑋 ) |
28 |
27
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ 𝑥 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
29 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) ∧ ¬ 𝑥 ∈ dom 𝐹 ) → 𝑃 ∈ 𝑋 ) |
30 |
28 29
|
ifclda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℕ ) → if ( 𝑥 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑥 ) , 𝑃 ) ∈ 𝑋 ) |
31 |
30 5
|
fmptd |
⊢ ( 𝜑 → 𝐺 : ℕ ⟶ 𝑋 ) |
32 |
|
flfval |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( ℕ filGen ( ℤ≥ “ ℕ ) ) ∈ ( Fil ‘ ℕ ) ∧ 𝐺 : ℕ ⟶ 𝑋 ) → ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ) ) |
33 |
11 17 31 32
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ) ) |
34 |
|
eqid |
⊢ ( ℕ filGen ( ℤ≥ “ ℕ ) ) = ( ℕ filGen ( ℤ≥ “ ℕ ) ) |
35 |
34
|
fmfg |
⊢ ( ( 𝑋 ∈ dom CMet ∧ ( ℤ≥ “ ℕ ) ∈ ( fBas ‘ ℕ ) ∧ 𝐺 : ℕ ⟶ 𝑋 ) → ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) = ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ) |
36 |
19 15 31 35
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) = ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ) |
37 |
36
|
oveq2d |
⊢ ( 𝜑 → ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ) ) |
38 |
33 37
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) = ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ) ) |
39 |
|
biidd |
⊢ ( 𝑧 = 1 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ↔ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) ) |
40 |
|
1zzd |
⊢ ( 𝜑 → 1 ∈ ℤ ) |
41 |
13 9 40
|
iscau3 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) ) ) ) |
42 |
41
|
simplbda |
⊢ ( ( 𝜑 ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) ) |
43 |
4 42
|
mpdan |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) ) |
44 |
|
simp1 |
⊢ ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) → 𝑘 ∈ dom 𝐹 ) |
45 |
44
|
ralimi |
⊢ ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) |
46 |
45
|
reximi |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) |
47 |
46
|
ralimi |
⊢ ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ∀ 𝑤 ∈ ( ℤ≥ ‘ 𝑘 ) ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑤 ) ) < 𝑧 ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) |
48 |
43 47
|
syl |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) |
49 |
|
1rp |
⊢ 1 ∈ ℝ+ |
50 |
49
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℝ+ ) |
51 |
39 48 50
|
rspcdva |
⊢ ( 𝜑 → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) |
52 |
|
dfss3 |
⊢ ( ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ↔ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ) |
53 |
|
nnsscn |
⊢ ℕ ⊆ ℂ |
54 |
31 53
|
jctir |
⊢ ( 𝜑 → ( 𝐺 : ℕ ⟶ 𝑋 ∧ ℕ ⊆ ℂ ) ) |
55 |
|
elpm2r |
⊢ ( ( ( 𝑋 ∈ dom CMet ∧ ℂ ∈ V ) ∧ ( 𝐺 : ℕ ⟶ 𝑋 ∧ ℕ ⊆ ℂ ) ) → 𝐺 ∈ ( 𝑋 ↑pm ℂ ) ) |
56 |
19 21 54 55
|
syl21anc |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝑋 ↑pm ℂ ) ) |
57 |
56
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → 𝐺 ∈ ( 𝑋 ↑pm ℂ ) ) |
58 |
|
eqid |
⊢ ( ℤ≥ ‘ 𝑗 ) = ( ℤ≥ ‘ 𝑗 ) |
59 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
60 |
|
nnz |
⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) |
61 |
60
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → 𝑗 ∈ ℤ ) |
62 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
63 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑚 ) ) |
64 |
58 59 61 62 63
|
iscau4 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ( 𝐹 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) ) |
65 |
64
|
simplbda |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝐹 ∈ ( Cau ‘ 𝐷 ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) |
66 |
4 65
|
mpidan |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) |
67 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → 𝑗 ∈ ℕ ) |
68 |
|
eluznn |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℕ ) |
69 |
67 68
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ℕ ) |
70 |
|
eluznn |
⊢ ( ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → 𝑘 ∈ ℕ ) |
71 |
5 30
|
dmmptd |
⊢ ( 𝜑 → dom 𝐺 = ℕ ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → dom 𝐺 = ℕ ) |
73 |
72
|
eleq2d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ( 𝑘 ∈ dom 𝐺 ↔ 𝑘 ∈ ℕ ) ) |
74 |
73
|
biimpar |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → 𝑘 ∈ dom 𝐺 ) |
75 |
74
|
a1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑘 ∈ dom 𝐹 → 𝑘 ∈ dom 𝐺 ) ) |
76 |
|
idd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) ) |
77 |
|
idd |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 → ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) |
78 |
75 76 77
|
3anim123d |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
79 |
70 78
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
80 |
79
|
anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
81 |
80
|
ralimdva |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
82 |
69 81
|
syldan |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
83 |
82
|
reximdva |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ( ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
84 |
83
|
ralimdv |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) |
85 |
66 84
|
mpd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) |
86 |
|
eluznn |
⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
87 |
67 86
|
sylan |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ ℕ ) |
88 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) |
89 |
88
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑘 ∈ dom 𝐹 ) |
90 |
|
iftrue |
⊢ ( 𝑘 ∈ dom 𝐹 → if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) = ( 𝐹 ‘ 𝑘 ) ) |
91 |
90
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) → if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) = ( 𝐹 ‘ 𝑘 ) ) |
92 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑘 ) ∈ V |
93 |
91 92
|
eqeltrdi |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) → if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) ∈ V ) |
94 |
|
eleq1w |
⊢ ( 𝑥 = 𝑘 → ( 𝑥 ∈ dom 𝐹 ↔ 𝑘 ∈ dom 𝐹 ) ) |
95 |
|
fveq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑘 ) ) |
96 |
94 95
|
ifbieq1d |
⊢ ( 𝑥 = 𝑘 → if ( 𝑥 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑥 ) , 𝑃 ) = if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) ) |
97 |
96 5
|
fvmptg |
⊢ ( ( 𝑘 ∈ ℕ ∧ if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) ∈ V ) → ( 𝐺 ‘ 𝑘 ) = if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) ) |
98 |
93 97
|
syldan |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) → ( 𝐺 ‘ 𝑘 ) = if ( 𝑘 ∈ dom 𝐹 , ( 𝐹 ‘ 𝑘 ) , 𝑃 ) ) |
99 |
98 91
|
eqtrd |
⊢ ( ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
100 |
87 89 99
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
101 |
88
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ dom 𝐹 ) |
102 |
69 101
|
elind |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → 𝑚 ∈ ( ℕ ∩ dom 𝐹 ) ) |
103 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐺 ‘ 𝑘 ) = ( 𝐺 ‘ 𝑚 ) ) |
104 |
|
fveq2 |
⊢ ( 𝑘 = 𝑚 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑚 ) ) |
105 |
103 104
|
eqeq12d |
⊢ ( 𝑘 = 𝑚 → ( ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ↔ ( 𝐺 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑚 ) ) ) |
106 |
|
elin |
⊢ ( 𝑘 ∈ ( ℕ ∩ dom 𝐹 ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑘 ∈ dom 𝐹 ) ) |
107 |
106 99
|
sylbi |
⊢ ( 𝑘 ∈ ( ℕ ∩ dom 𝐹 ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
108 |
105 107
|
vtoclga |
⊢ ( 𝑚 ∈ ( ℕ ∩ dom 𝐹 ) → ( 𝐺 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑚 ) ) |
109 |
102 108
|
syl |
⊢ ( ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) ∧ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐺 ‘ 𝑚 ) = ( 𝐹 ‘ 𝑚 ) ) |
110 |
58 59 61 100 109
|
iscau4 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → ( 𝐺 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝐺 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑚 ∈ ( ℤ≥ ‘ 𝑗 ) ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑚 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 ( 𝐹 ‘ 𝑚 ) ) < 𝑧 ) ) ) ) |
111 |
57 85 110
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 ) ) → 𝐺 ∈ ( Cau ‘ 𝐷 ) ) |
112 |
111
|
expr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ( ℤ≥ ‘ 𝑗 ) ⊆ dom 𝐹 → 𝐺 ∈ ( Cau ‘ 𝐷 ) ) ) |
113 |
52 112
|
syl5bir |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 → 𝐺 ∈ ( Cau ‘ 𝐷 ) ) ) |
114 |
113
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 → 𝐺 ∈ ( Cau ‘ 𝐷 ) ) ) |
115 |
51 114
|
mpd |
⊢ ( 𝜑 → 𝐺 ∈ ( Cau ‘ 𝐷 ) ) |
116 |
|
eqid |
⊢ ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) = ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) |
117 |
13 116
|
caucfil |
⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 1 ∈ ℤ ∧ 𝐺 : ℕ ⟶ 𝑋 ) → ( 𝐺 ∈ ( Cau ‘ 𝐷 ) ↔ ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ∈ ( CauFil ‘ 𝐷 ) ) ) |
118 |
9 40 31 117
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ∈ ( Cau ‘ 𝐷 ) ↔ ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ∈ ( CauFil ‘ 𝐷 ) ) ) |
119 |
115 118
|
mpbid |
⊢ ( 𝜑 → ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ∈ ( CauFil ‘ 𝐷 ) ) |
120 |
1
|
cmetcvg |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ) ≠ ∅ ) |
121 |
2 119 120
|
syl2anc |
⊢ ( 𝜑 → ( 𝐽 fLim ( ( 𝑋 FilMap 𝐺 ) ‘ ( ℤ≥ “ ℕ ) ) ) ≠ ∅ ) |
122 |
38 121
|
eqnetrd |
⊢ ( 𝜑 → ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) ≠ ∅ ) |
123 |
|
n0 |
⊢ ( ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) ) |
124 |
122 123
|
sylib |
⊢ ( 𝜑 → ∃ 𝑦 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) ) |
125 |
13 34
|
lmflf |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 1 ∈ ℤ ∧ 𝐺 : ℕ ⟶ 𝑋 ) → ( 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) ) ) |
126 |
11 40 31 125
|
syl3anc |
⊢ ( 𝜑 → ( 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) ) ) |
127 |
23
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ) |
128 |
|
lmcl |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ 𝑋 ) |
129 |
11 128
|
sylan |
⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ 𝑋 ) |
130 |
1 9 13 40
|
lmmbr3 |
⊢ ( 𝜑 → ( 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ( 𝐺 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑦 ∈ 𝑋 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) ) |
131 |
130
|
biimpa |
⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ( 𝐺 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑦 ∈ 𝑋 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
132 |
131
|
simp3d |
⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) |
133 |
|
r19.26 |
⊢ ( ∀ 𝑧 ∈ ℝ+ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ↔ ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
134 |
13
|
rexanuz2 |
⊢ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ↔ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
135 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → 𝑘 ∈ dom 𝐹 ) |
136 |
99
|
ad2ant2lr |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( 𝐺 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑘 ) ) |
137 |
|
simprr2 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ) |
138 |
136 137
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ) |
139 |
136
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) = ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) ) |
140 |
|
simprr3 |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) |
141 |
139 140
|
eqbrtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) |
142 |
135 138 141
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ∧ ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) |
143 |
142
|
ex |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
144 |
86 143
|
sylan2 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ℕ ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
145 |
144
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) ∧ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
146 |
145
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
147 |
146
|
reximdva |
⊢ ( 𝜑 → ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
148 |
134 147
|
syl5bir |
⊢ ( 𝜑 → ( ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
149 |
148
|
ralimdv |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ℝ+ ( ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
150 |
133 149
|
syl5bir |
⊢ ( 𝜑 → ( ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) 𝑘 ∈ dom 𝐹 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
151 |
48 150
|
mpand |
⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
152 |
151
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ( ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐺 ∧ ( 𝐺 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐺 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) |
153 |
132 152
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) |
154 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
155 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 1 ∈ ℤ ) |
156 |
1 154 13 155
|
lmmbr3 |
⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ ( 𝐹 ∈ ( 𝑋 ↑pm ℂ ) ∧ 𝑦 ∈ 𝑋 ∧ ∀ 𝑧 ∈ ℝ+ ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝑘 ∈ dom 𝐹 ∧ ( 𝐹 ‘ 𝑘 ) ∈ 𝑋 ∧ ( ( 𝐹 ‘ 𝑘 ) 𝐷 𝑦 ) < 𝑧 ) ) ) ) |
157 |
127 129 153 156
|
mpbir3and |
⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) |
158 |
|
lmrel |
⊢ Rel ( ⇝𝑡 ‘ 𝐽 ) |
159 |
158
|
releldmi |
⊢ ( 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
160 |
157 159
|
syl |
⊢ ( ( 𝜑 ∧ 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |
161 |
160
|
ex |
⊢ ( 𝜑 → ( 𝐺 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
162 |
126 161
|
sylbird |
⊢ ( 𝜑 → ( 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
163 |
162
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑦 𝑦 ∈ ( ( 𝐽 fLimf ( ℕ filGen ( ℤ≥ “ ℕ ) ) ) ‘ 𝐺 ) → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) ) |
164 |
124 163
|
mpd |
⊢ ( 𝜑 → 𝐹 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ) |