Step |
Hyp |
Ref |
Expression |
1 |
|
cmetcusp1.x |
⊢ 𝑋 = ( Base ‘ 𝐹 ) |
2 |
|
cmetcusp1.d |
⊢ 𝐷 = ( ( dist ‘ 𝐹 ) ↾ ( 𝑋 × 𝑋 ) ) |
3 |
|
cmetcusp1.u |
⊢ 𝑈 = ( UnifSt ‘ 𝐹 ) |
4 |
|
cmsms |
⊢ ( 𝐹 ∈ CMetSp → 𝐹 ∈ MetSp ) |
5 |
|
msxms |
⊢ ( 𝐹 ∈ MetSp → 𝐹 ∈ ∞MetSp ) |
6 |
4 5
|
syl |
⊢ ( 𝐹 ∈ CMetSp → 𝐹 ∈ ∞MetSp ) |
7 |
1 2 3
|
xmsusp |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ ∞MetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐹 ∈ UnifSp ) |
8 |
6 7
|
syl3an2 |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐹 ∈ UnifSp ) |
9 |
|
simpl3 |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → 𝑈 = ( metUnif ‘ 𝐷 ) ) |
10 |
9
|
fveq2d |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( CauFilu ‘ 𝑈 ) = ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) |
11 |
10
|
eleq2d |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) ↔ 𝑐 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ) |
12 |
|
simpl1 |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → 𝑋 ≠ ∅ ) |
13 |
1 2
|
cmscmet |
⊢ ( 𝐹 ∈ CMetSp → 𝐷 ∈ ( CMet ‘ 𝑋 ) ) |
14 |
|
cmetmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) |
15 |
|
metxmet |
⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
16 |
13 14 15
|
3syl |
⊢ ( 𝐹 ∈ CMetSp → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
17 |
16
|
3ad2ant2 |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) |
19 |
|
simpr |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → 𝑐 ∈ ( Fil ‘ 𝑋 ) ) |
20 |
|
cfilucfil4 |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ) ) |
21 |
12 18 19 20
|
syl3anc |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ↔ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ) ) |
22 |
11 21
|
bitrd |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) ↔ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ) ) |
23 |
|
eqid |
⊢ ( MetOpen ‘ 𝐷 ) = ( MetOpen ‘ 𝐷 ) |
24 |
23
|
iscmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) ) |
25 |
24
|
simprbi |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ∀ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) |
26 |
13 25
|
syl |
⊢ ( 𝐹 ∈ CMetSp → ∀ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) |
27 |
|
eqid |
⊢ ( TopOpen ‘ 𝐹 ) = ( TopOpen ‘ 𝐹 ) |
28 |
27 1 2
|
xmstopn |
⊢ ( 𝐹 ∈ ∞MetSp → ( TopOpen ‘ 𝐹 ) = ( MetOpen ‘ 𝐷 ) ) |
29 |
6 28
|
syl |
⊢ ( 𝐹 ∈ CMetSp → ( TopOpen ‘ 𝐹 ) = ( MetOpen ‘ 𝐷 ) ) |
30 |
29
|
oveq1d |
⊢ ( 𝐹 ∈ CMetSp → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) = ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ) |
31 |
30
|
neeq1d |
⊢ ( 𝐹 ∈ CMetSp → ( ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ↔ ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) ) |
32 |
31
|
ralbidv |
⊢ ( 𝐹 ∈ CMetSp → ( ∀ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ↔ ∀ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 ) fLim 𝑐 ) ≠ ∅ ) ) |
33 |
26 32
|
mpbird |
⊢ ( 𝐹 ∈ CMetSp → ∀ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) |
34 |
33
|
r19.21bi |
⊢ ( ( 𝐹 ∈ CMetSp ∧ 𝑐 ∈ ( CauFil ‘ 𝐷 ) ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) |
35 |
34
|
ex |
⊢ ( 𝐹 ∈ CMetSp → ( 𝑐 ∈ ( CauFil ‘ 𝐷 ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) ) |
36 |
35
|
3ad2ant2 |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ( 𝑐 ∈ ( CauFil ‘ 𝐷 ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) ) |
37 |
36
|
adantr |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFil ‘ 𝐷 ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) ) |
38 |
22 37
|
sylbid |
⊢ ( ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) ∧ 𝑐 ∈ ( Fil ‘ 𝑋 ) ) → ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) ) |
39 |
38
|
ralrimiva |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → ∀ 𝑐 ∈ ( Fil ‘ 𝑋 ) ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) ) |
40 |
1 3 27
|
iscusp2 |
⊢ ( 𝐹 ∈ CUnifSp ↔ ( 𝐹 ∈ UnifSp ∧ ∀ 𝑐 ∈ ( Fil ‘ 𝑋 ) ( 𝑐 ∈ ( CauFilu ‘ 𝑈 ) → ( ( TopOpen ‘ 𝐹 ) fLim 𝑐 ) ≠ ∅ ) ) ) |
41 |
8 39 40
|
sylanbrc |
⊢ ( ( 𝑋 ≠ ∅ ∧ 𝐹 ∈ CMetSp ∧ 𝑈 = ( metUnif ‘ 𝐷 ) ) → 𝐹 ∈ CUnifSp ) |