| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cmetcusp1.x | ⊢ 𝑋  =  ( Base ‘ 𝐹 ) | 
						
							| 2 |  | cmetcusp1.d | ⊢ 𝐷  =  ( ( dist ‘ 𝐹 )  ↾  ( 𝑋  ×  𝑋 ) ) | 
						
							| 3 |  | cmetcusp1.u | ⊢ 𝑈  =  ( UnifSt ‘ 𝐹 ) | 
						
							| 4 |  | cmsms | ⊢ ( 𝐹  ∈  CMetSp  →  𝐹  ∈  MetSp ) | 
						
							| 5 |  | msxms | ⊢ ( 𝐹  ∈  MetSp  →  𝐹  ∈  ∞MetSp ) | 
						
							| 6 | 4 5 | syl | ⊢ ( 𝐹  ∈  CMetSp  →  𝐹  ∈  ∞MetSp ) | 
						
							| 7 | 1 2 3 | xmsusp | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  ∞MetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  →  𝐹  ∈  UnifSp ) | 
						
							| 8 | 6 7 | syl3an2 | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  →  𝐹  ∈  UnifSp ) | 
						
							| 9 |  | simpl3 | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  ∧  𝑐  ∈  ( Fil ‘ 𝑋 ) )  →  𝑈  =  ( metUnif ‘ 𝐷 ) ) | 
						
							| 10 | 9 | fveq2d | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  ∧  𝑐  ∈  ( Fil ‘ 𝑋 ) )  →  ( CauFilu ‘ 𝑈 )  =  ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) | 
						
							| 11 | 10 | eleq2d | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  ∧  𝑐  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑐  ∈  ( CauFilu ‘ 𝑈 )  ↔  𝑐  ∈  ( CauFilu ‘ ( metUnif ‘ 𝐷 ) ) ) ) | 
						
							| 12 |  | simpl1 | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  ∧  𝑐  ∈  ( Fil ‘ 𝑋 ) )  →  𝑋  ≠  ∅ ) | 
						
							| 13 | 1 2 | cmscmet | ⊢ ( 𝐹  ∈  CMetSp  →  𝐷  ∈  ( CMet ‘ 𝑋 ) ) | 
						
							| 14 |  | cmetmet | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  →  𝐷  ∈  ( Met ‘ 𝑋 ) ) | 
						
							| 15 |  | metxmet | ⊢ ( 𝐷  ∈  ( Met ‘ 𝑋 )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 16 | 13 14 15 | 3syl | ⊢ ( 𝐹  ∈  CMetSp  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 17 | 16 | 3ad2ant2 | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  ∧  𝑐  ∈  ( Fil ‘ 𝑋 ) )  →  𝐷  ∈  ( ∞Met ‘ 𝑋 ) ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  ∧  𝑐  ∈  ( Fil ‘ 𝑋 ) )  →  𝑐  ∈  ( Fil ‘ 𝑋 ) ) | 
						
							| 20 |  | cfilucfil4 | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐷  ∈  ( ∞Met ‘ 𝑋 )  ∧  𝑐  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑐  ∈  ( CauFilu ‘ ( metUnif ‘ 𝐷 ) )  ↔  𝑐  ∈  ( CauFil ‘ 𝐷 ) ) ) | 
						
							| 21 | 12 18 19 20 | syl3anc | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  ∧  𝑐  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑐  ∈  ( CauFilu ‘ ( metUnif ‘ 𝐷 ) )  ↔  𝑐  ∈  ( CauFil ‘ 𝐷 ) ) ) | 
						
							| 22 | 11 21 | bitrd | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  ∧  𝑐  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑐  ∈  ( CauFilu ‘ 𝑈 )  ↔  𝑐  ∈  ( CauFil ‘ 𝐷 ) ) ) | 
						
							| 23 |  | eqid | ⊢ ( MetOpen ‘ 𝐷 )  =  ( MetOpen ‘ 𝐷 ) | 
						
							| 24 | 23 | iscmet | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  ↔  ( 𝐷  ∈  ( Met ‘ 𝑋 )  ∧  ∀ 𝑐  ∈  ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 )  fLim  𝑐 )  ≠  ∅ ) ) | 
						
							| 25 | 24 | simprbi | ⊢ ( 𝐷  ∈  ( CMet ‘ 𝑋 )  →  ∀ 𝑐  ∈  ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 )  fLim  𝑐 )  ≠  ∅ ) | 
						
							| 26 | 13 25 | syl | ⊢ ( 𝐹  ∈  CMetSp  →  ∀ 𝑐  ∈  ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 )  fLim  𝑐 )  ≠  ∅ ) | 
						
							| 27 |  | eqid | ⊢ ( TopOpen ‘ 𝐹 )  =  ( TopOpen ‘ 𝐹 ) | 
						
							| 28 | 27 1 2 | xmstopn | ⊢ ( 𝐹  ∈  ∞MetSp  →  ( TopOpen ‘ 𝐹 )  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 29 | 6 28 | syl | ⊢ ( 𝐹  ∈  CMetSp  →  ( TopOpen ‘ 𝐹 )  =  ( MetOpen ‘ 𝐷 ) ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( 𝐹  ∈  CMetSp  →  ( ( TopOpen ‘ 𝐹 )  fLim  𝑐 )  =  ( ( MetOpen ‘ 𝐷 )  fLim  𝑐 ) ) | 
						
							| 31 | 30 | neeq1d | ⊢ ( 𝐹  ∈  CMetSp  →  ( ( ( TopOpen ‘ 𝐹 )  fLim  𝑐 )  ≠  ∅  ↔  ( ( MetOpen ‘ 𝐷 )  fLim  𝑐 )  ≠  ∅ ) ) | 
						
							| 32 | 31 | ralbidv | ⊢ ( 𝐹  ∈  CMetSp  →  ( ∀ 𝑐  ∈  ( CauFil ‘ 𝐷 ) ( ( TopOpen ‘ 𝐹 )  fLim  𝑐 )  ≠  ∅  ↔  ∀ 𝑐  ∈  ( CauFil ‘ 𝐷 ) ( ( MetOpen ‘ 𝐷 )  fLim  𝑐 )  ≠  ∅ ) ) | 
						
							| 33 | 26 32 | mpbird | ⊢ ( 𝐹  ∈  CMetSp  →  ∀ 𝑐  ∈  ( CauFil ‘ 𝐷 ) ( ( TopOpen ‘ 𝐹 )  fLim  𝑐 )  ≠  ∅ ) | 
						
							| 34 | 33 | r19.21bi | ⊢ ( ( 𝐹  ∈  CMetSp  ∧  𝑐  ∈  ( CauFil ‘ 𝐷 ) )  →  ( ( TopOpen ‘ 𝐹 )  fLim  𝑐 )  ≠  ∅ ) | 
						
							| 35 | 34 | ex | ⊢ ( 𝐹  ∈  CMetSp  →  ( 𝑐  ∈  ( CauFil ‘ 𝐷 )  →  ( ( TopOpen ‘ 𝐹 )  fLim  𝑐 )  ≠  ∅ ) ) | 
						
							| 36 | 35 | 3ad2ant2 | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  →  ( 𝑐  ∈  ( CauFil ‘ 𝐷 )  →  ( ( TopOpen ‘ 𝐹 )  fLim  𝑐 )  ≠  ∅ ) ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  ∧  𝑐  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑐  ∈  ( CauFil ‘ 𝐷 )  →  ( ( TopOpen ‘ 𝐹 )  fLim  𝑐 )  ≠  ∅ ) ) | 
						
							| 38 | 22 37 | sylbid | ⊢ ( ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  ∧  𝑐  ∈  ( Fil ‘ 𝑋 ) )  →  ( 𝑐  ∈  ( CauFilu ‘ 𝑈 )  →  ( ( TopOpen ‘ 𝐹 )  fLim  𝑐 )  ≠  ∅ ) ) | 
						
							| 39 | 38 | ralrimiva | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  →  ∀ 𝑐  ∈  ( Fil ‘ 𝑋 ) ( 𝑐  ∈  ( CauFilu ‘ 𝑈 )  →  ( ( TopOpen ‘ 𝐹 )  fLim  𝑐 )  ≠  ∅ ) ) | 
						
							| 40 | 1 3 27 | iscusp2 | ⊢ ( 𝐹  ∈  CUnifSp  ↔  ( 𝐹  ∈  UnifSp  ∧  ∀ 𝑐  ∈  ( Fil ‘ 𝑋 ) ( 𝑐  ∈  ( CauFilu ‘ 𝑈 )  →  ( ( TopOpen ‘ 𝐹 )  fLim  𝑐 )  ≠  ∅ ) ) ) | 
						
							| 41 | 8 39 40 | sylanbrc | ⊢ ( ( 𝑋  ≠  ∅  ∧  𝐹  ∈  CMetSp  ∧  𝑈  =  ( metUnif ‘ 𝐷 ) )  →  𝐹  ∈  CUnifSp ) |