Step |
Hyp |
Ref |
Expression |
1 |
|
iscmet.1 |
⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) |
2 |
1
|
iscmet |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ↔ ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) ) |
3 |
2
|
simprbi |
⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ) |
4 |
|
oveq2 |
⊢ ( 𝑓 = 𝐹 → ( 𝐽 fLim 𝑓 ) = ( 𝐽 fLim 𝐹 ) ) |
5 |
4
|
neeq1d |
⊢ ( 𝑓 = 𝐹 → ( ( 𝐽 fLim 𝑓 ) ≠ ∅ ↔ ( 𝐽 fLim 𝐹 ) ≠ ∅ ) ) |
6 |
5
|
rspccva |
⊢ ( ( ∀ 𝑓 ∈ ( CauFil ‘ 𝐷 ) ( 𝐽 fLim 𝑓 ) ≠ ∅ ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐽 fLim 𝐹 ) ≠ ∅ ) |
7 |
3 6
|
sylan |
⊢ ( ( 𝐷 ∈ ( CMet ‘ 𝑋 ) ∧ 𝐹 ∈ ( CauFil ‘ 𝐷 ) ) → ( 𝐽 fLim 𝐹 ) ≠ ∅ ) |