Metamath Proof Explorer


Theorem cmetmeti

Description: A complete metric space is a metric space. (Contributed by NM, 26-Oct-2007)

Ref Expression
Hypothesis cmetmeti.1 𝐷 ∈ ( CMet ‘ 𝑋 )
Assertion cmetmeti 𝐷 ∈ ( Met ‘ 𝑋 )

Proof

Step Hyp Ref Expression
1 cmetmeti.1 𝐷 ∈ ( CMet ‘ 𝑋 )
2 cmetmet ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) )
3 1 2 ax-mp 𝐷 ∈ ( Met ‘ 𝑋 )