Description: A complete metric space is a metric space. (Contributed by NM, 26-Oct-2007)
Ref | Expression | ||
---|---|---|---|
Hypothesis | cmetmeti.1 | ⊢ 𝐷 ∈ ( CMet ‘ 𝑋 ) | |
Assertion | cmetmeti | ⊢ 𝐷 ∈ ( Met ‘ 𝑋 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cmetmeti.1 | ⊢ 𝐷 ∈ ( CMet ‘ 𝑋 ) | |
2 | cmetmet | ⊢ ( 𝐷 ∈ ( CMet ‘ 𝑋 ) → 𝐷 ∈ ( Met ‘ 𝑋 ) ) | |
3 | 1 2 | ax-mp | ⊢ 𝐷 ∈ ( Met ‘ 𝑋 ) |