Metamath Proof Explorer
		
		
		
		Description:  A Hilbert lattice element commutes with its join.  (Contributed by NM, 7-Aug-2004)  (New usage is discouraged.)
		
			
				
					 | 
					 | 
					Ref | 
					Expression | 
				
					
						 | 
						Hypotheses | 
						pjoml2.1 | 
						⊢ 𝐴  ∈   Cℋ   | 
					
					
						 | 
						 | 
						pjoml2.2 | 
						⊢ 𝐵  ∈   Cℋ   | 
					
				
					 | 
					Assertion | 
					cmj2i | 
					⊢  𝐵  𝐶ℋ  ( 𝐴  ∨ℋ  𝐵 )  | 
				
			
		
		
			
				Proof
				
					
						| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pjoml2.1 | 
							⊢ 𝐴  ∈   Cℋ   | 
						
						
							| 2 | 
							
								
							 | 
							pjoml2.2 | 
							⊢ 𝐵  ∈   Cℋ   | 
						
						
							| 3 | 
							
								1 2
							 | 
							chjcli | 
							⊢ ( 𝐴  ∨ℋ  𝐵 )  ∈   Cℋ   | 
						
						
							| 4 | 
							
								2 1
							 | 
							chub2i | 
							⊢ 𝐵  ⊆  ( 𝐴  ∨ℋ  𝐵 )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							lecmii | 
							⊢ 𝐵  𝐶ℋ  ( 𝐴  ∨ℋ  𝐵 )  |