Metamath Proof Explorer
Description: A Hilbert lattice element commutes with its meet. (Contributed by NM, 7-Aug-2004) (New usage is discouraged.)
|
|
Ref |
Expression |
|
Hypotheses |
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
|
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
|
Assertion |
cmm1i |
⊢ 𝐴 𝐶ℋ ( 𝐴 ∩ 𝐵 ) |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjoml2.1 |
⊢ 𝐴 ∈ Cℋ |
| 2 |
|
pjoml2.2 |
⊢ 𝐵 ∈ Cℋ |
| 3 |
1 2
|
chincli |
⊢ ( 𝐴 ∩ 𝐵 ) ∈ Cℋ |
| 4 |
|
inss1 |
⊢ ( 𝐴 ∩ 𝐵 ) ⊆ 𝐴 |
| 5 |
3 1 4
|
lecmii |
⊢ ( 𝐴 ∩ 𝐵 ) 𝐶ℋ 𝐴 |
| 6 |
3 1 5
|
cmcmii |
⊢ 𝐴 𝐶ℋ ( 𝐴 ∩ 𝐵 ) |